Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) |
2 |
|
aaliou3lem.d |
⊢ 𝐿 = Σ 𝑏 ∈ ℕ ( 𝐹 ‘ 𝑏 ) |
3 |
|
aaliou3lem.e |
⊢ 𝐻 = ( 𝑐 ∈ ℕ ↦ Σ 𝑏 ∈ ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( 1 ... 𝑐 ) = ( 1 ... 𝐴 ) ) |
5 |
4
|
sumeq1d |
⊢ ( 𝑐 = 𝐴 → Σ 𝑏 ∈ ( 1 ... 𝑐 ) ( 𝐹 ‘ 𝑏 ) = Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) |
6 |
|
sumex |
⊢ Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ∈ V |
7 |
5 3 6
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( 𝐻 ‘ 𝐴 ) = Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) |
8 |
|
fzfid |
⊢ ( 𝐴 ∈ ℕ → ( 1 ... 𝐴 ) ∈ Fin ) |
9 |
|
elfznn |
⊢ ( 𝑏 ∈ ( 1 ... 𝐴 ) → 𝑏 ∈ ℕ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → 𝑏 ∈ ℕ ) |
11 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝑏 ) ) |
12 |
11
|
negeqd |
⊢ ( 𝑎 = 𝑏 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝑏 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) |
14 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ V |
15 |
13 1 14
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) = ( 2 ↑ - ( ! ‘ 𝑏 ) ) ) |
16 |
|
2rp |
⊢ 2 ∈ ℝ+ |
17 |
|
nnnn0 |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℕ0 ) |
18 |
17
|
faccld |
⊢ ( 𝑏 ∈ ℕ → ( ! ‘ 𝑏 ) ∈ ℕ ) |
19 |
18
|
nnzd |
⊢ ( 𝑏 ∈ ℕ → ( ! ‘ 𝑏 ) ∈ ℤ ) |
20 |
19
|
znegcld |
⊢ ( 𝑏 ∈ ℕ → - ( ! ‘ 𝑏 ) ∈ ℤ ) |
21 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ - ( ! ‘ 𝑏 ) ∈ ℤ ) → ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ ℝ+ ) |
22 |
16 20 21
|
sylancr |
⊢ ( 𝑏 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ ℝ+ ) |
23 |
22
|
rpred |
⊢ ( 𝑏 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝑏 ) ) ∈ ℝ ) |
24 |
15 23
|
eqeltrd |
⊢ ( 𝑏 ∈ ℕ → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
25 |
10 24
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑏 ∈ ( 1 ... 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
26 |
8 25
|
fsumrecl |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
27 |
7 26
|
eqeltrd |
⊢ ( 𝐴 ∈ ℕ → ( 𝐻 ‘ 𝐴 ) ∈ ℝ ) |