Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
⊢ 2 ∈ ℝ+ |
2 |
|
rpdivcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 2 / 𝐵 ) ∈ ℝ+ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐵 ∈ ℝ+ → ( 2 / 𝐵 ) ∈ ℝ+ ) |
4 |
3
|
rpred |
⊢ ( 𝐵 ∈ ℝ+ → ( 2 / 𝐵 ) ∈ ℝ ) |
5 |
|
2re |
⊢ 2 ∈ ℝ |
6 |
|
1lt2 |
⊢ 1 < 2 |
7 |
|
expnbnd |
⊢ ( ( ( 2 / 𝐵 ) ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2 ) → ∃ 𝑎 ∈ ℕ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) |
8 |
5 6 7
|
mp3an23 |
⊢ ( ( 2 / 𝐵 ) ∈ ℝ → ∃ 𝑎 ∈ ℕ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) |
9 |
4 8
|
syl |
⊢ ( 𝐵 ∈ ℝ+ → ∃ 𝑎 ∈ ℕ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℕ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) |
11 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝑎 ∈ ℕ ) |
12 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝐴 ∈ ℕ ) |
13 |
|
nnaddm1cl |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑎 + 𝐴 ) − 1 ) ∈ ℕ ) |
14 |
11 12 13
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 𝑎 + 𝐴 ) − 1 ) ∈ ℕ ) |
15 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝐵 ∈ ℝ+ ) |
16 |
|
rerpdivcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 2 / 𝐵 ) ∈ ℝ ) |
17 |
5 15 16
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 / 𝐵 ) ∈ ℝ ) |
18 |
11
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝑎 ∈ ℕ0 ) |
19 |
|
reexpcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑎 ∈ ℕ0 ) → ( 2 ↑ 𝑎 ) ∈ ℝ ) |
20 |
5 18 19
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ 𝑎 ) ∈ ℝ ) |
21 |
11 12
|
nnaddcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 𝑎 + 𝐴 ) ∈ ℕ ) |
22 |
|
nnm1nn0 |
⊢ ( ( 𝑎 + 𝐴 ) ∈ ℕ → ( ( 𝑎 + 𝐴 ) − 1 ) ∈ ℕ0 ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 𝑎 + 𝐴 ) − 1 ) ∈ ℕ0 ) |
24 |
|
peano2nn0 |
⊢ ( ( ( 𝑎 + 𝐴 ) − 1 ) ∈ ℕ0 → ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ∈ ℕ0 ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ∈ ℕ0 ) |
26 |
25
|
faccld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ∈ ℕ ) |
27 |
26
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ∈ ℤ ) |
28 |
23
|
faccld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ∈ ℕ ) |
29 |
28
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ∈ ℤ ) |
30 |
12
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝐴 ∈ ℤ ) |
31 |
29 30
|
zmulcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ∈ ℤ ) |
32 |
27 31
|
zsubcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ∈ ℤ ) |
33 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ∈ ℤ ) → ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ∈ ℝ+ ) |
34 |
1 32 33
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ∈ ℝ+ ) |
35 |
34
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ∈ ℝ ) |
36 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) |
37 |
17 20 36
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 / 𝐵 ) ≤ ( 2 ↑ 𝑎 ) ) |
38 |
5
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 2 ∈ ℝ ) |
39 |
|
1le2 |
⊢ 1 ≤ 2 |
40 |
39
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 1 ≤ 2 ) |
41 |
11
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝑎 ∈ ℝ ) |
42 |
28
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ∈ ℝ ) |
43 |
18
|
nn0ge0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 0 ≤ 𝑎 ) |
44 |
28
|
nnge1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 1 ≤ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) |
45 |
41 42 43 44
|
lemulge12d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝑎 ≤ ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝑎 ) ) |
46 |
|
facp1 |
⊢ ( ( ( 𝑎 + 𝐴 ) − 1 ) ∈ ℕ0 → ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) = ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) |
47 |
23 46
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) = ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) |
48 |
47
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) = ( ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) |
49 |
28
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ∈ ℂ ) |
50 |
25
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ∈ ℂ ) |
51 |
12
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝐴 ∈ ℂ ) |
52 |
49 50 51
|
subdid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · ( ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) − 𝐴 ) ) = ( ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) |
53 |
11
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝑎 ∈ ℂ ) |
54 |
21
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 𝑎 + 𝐴 ) ∈ ℂ ) |
55 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 1 ∈ ℂ ) |
56 |
54 55
|
npcand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) = ( 𝑎 + 𝐴 ) ) |
57 |
53 51 56
|
mvrraddd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) − 𝐴 ) = 𝑎 ) |
58 |
57
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · ( ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) − 𝐴 ) ) = ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝑎 ) ) |
59 |
48 52 58
|
3eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) = ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝑎 ) ) |
60 |
45 59
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝑎 ≤ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) |
61 |
11
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝑎 ∈ ℤ ) |
62 |
|
eluz |
⊢ ( ( 𝑎 ∈ ℤ ∧ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ∈ ℤ ) → ( ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑎 ) ↔ 𝑎 ≤ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ) |
63 |
61 32 62
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑎 ) ↔ 𝑎 ≤ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ) |
64 |
60 63
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑎 ) ) |
65 |
38 40 64
|
leexp2ad |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ 𝑎 ) ≤ ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ) |
66 |
17 20 35 37 65
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 / 𝐵 ) ≤ ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ) |
67 |
|
rpcnne0 |
⊢ ( 2 ∈ ℝ+ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
68 |
1 67
|
mp1i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
69 |
|
expsub |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ∈ ℤ ∧ ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ∈ ℤ ) ) → ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) = ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) / ( 2 ↑ ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ) |
70 |
68 27 31 69
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) = ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) / ( 2 ↑ ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ) |
71 |
|
2cn |
⊢ 2 ∈ ℂ |
72 |
71
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 2 ∈ ℂ ) |
73 |
12
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝐴 ∈ ℕ0 ) |
74 |
28
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ∈ ℕ0 ) |
75 |
72 73 74
|
expmuld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) = ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) |
76 |
75
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) / ( 2 ↑ ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) = ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) |
77 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ∈ ℤ ) → ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ∈ ℝ+ ) |
78 |
1 27 77
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ∈ ℝ+ ) |
79 |
78
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ∈ ℂ ) |
80 |
|
rpexpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ∈ ℤ ) → ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ∈ ℝ+ ) |
81 |
1 29 80
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ∈ ℝ+ ) |
82 |
81 30
|
rpexpcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ∈ ℝ+ ) |
83 |
82
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ∈ ℂ ) |
84 |
82
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ≠ 0 ) |
85 |
79 83 84
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) = ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) |
86 |
70 76 85
|
3eqtrrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) = ( 2 ↑ ( ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) − ( ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) · 𝐴 ) ) ) ) |
87 |
66 86
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 / 𝐵 ) ≤ ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) |
88 |
82
|
rpreccld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ∈ ℝ+ ) |
89 |
78 88
|
rpmulcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ∈ ℝ+ ) |
90 |
89
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ∈ ℝ ) |
91 |
38 90 15
|
ledivmuld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 / 𝐵 ) ≤ ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ↔ 2 ≤ ( 𝐵 · ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) ) ) |
92 |
87 91
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 2 ≤ ( 𝐵 · ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) ) |
93 |
15
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 𝐵 ∈ ℂ ) |
94 |
88
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ∈ ℂ ) |
95 |
93 79 94
|
mul12d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 𝐵 · ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) = ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) ) |
96 |
92 95
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → 2 ≤ ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) ) |
97 |
15 88
|
rpmulcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ∈ ℝ+ ) |
98 |
97
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ∈ ℝ ) |
99 |
38 98 78
|
ledivmuld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ( 2 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ≤ ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ↔ 2 ≤ ( ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) · ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) ) ) |
100 |
96 99
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ≤ ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) |
101 |
26
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ∈ ℕ0 ) |
102 |
|
expneg |
⊢ ( ( 2 ∈ ℂ ∧ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ∈ ℕ0 ) → ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) = ( 1 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ) |
103 |
71 101 102
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) = ( 1 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ) |
104 |
103
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 · ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) = ( 2 · ( 1 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ) ) |
105 |
78
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ≠ 0 ) |
106 |
72 79 105
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) = ( 2 · ( 1 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ) ) |
107 |
104 106
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 · ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) = ( 2 / ( 2 ↑ ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ) |
108 |
93 83 84
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 𝐵 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) = ( 𝐵 · ( 1 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) |
109 |
100 107 108
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ( 2 · ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ≤ ( 𝐵 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) |
110 |
|
fvoveq1 |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( ! ‘ ( 𝑥 + 1 ) ) = ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) |
111 |
110
|
negeqd |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → - ( ! ‘ ( 𝑥 + 1 ) ) = - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) |
112 |
111
|
oveq2d |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( 2 ↑ - ( ! ‘ ( 𝑥 + 1 ) ) ) = ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) |
113 |
112
|
oveq2d |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( 2 · ( 2 ↑ - ( ! ‘ ( 𝑥 + 1 ) ) ) ) = ( 2 · ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ) |
114 |
|
fveq2 |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) |
115 |
114
|
oveq2d |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( 2 ↑ ( ! ‘ 𝑥 ) ) = ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ) |
116 |
115
|
oveq1d |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( ( 2 ↑ ( ! ‘ 𝑥 ) ) ↑ 𝐴 ) = ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) |
117 |
116
|
oveq2d |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( 𝐵 / ( ( 2 ↑ ( ! ‘ 𝑥 ) ) ↑ 𝐴 ) ) = ( 𝐵 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) |
118 |
113 117
|
breq12d |
⊢ ( 𝑥 = ( ( 𝑎 + 𝐴 ) − 1 ) → ( ( 2 · ( 2 ↑ - ( ! ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝐵 / ( ( 2 ↑ ( ! ‘ 𝑥 ) ) ↑ 𝐴 ) ) ↔ ( 2 · ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ≤ ( 𝐵 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) ) |
119 |
118
|
rspcev |
⊢ ( ( ( ( 𝑎 + 𝐴 ) − 1 ) ∈ ℕ ∧ ( 2 · ( 2 ↑ - ( ! ‘ ( ( ( 𝑎 + 𝐴 ) − 1 ) + 1 ) ) ) ) ≤ ( 𝐵 / ( ( 2 ↑ ( ! ‘ ( ( 𝑎 + 𝐴 ) − 1 ) ) ) ↑ 𝐴 ) ) ) → ∃ 𝑥 ∈ ℕ ( 2 · ( 2 ↑ - ( ! ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝐵 / ( ( 2 ↑ ( ! ‘ 𝑥 ) ) ↑ 𝐴 ) ) ) |
120 |
14 109 119
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℕ ∧ ( 2 / 𝐵 ) < ( 2 ↑ 𝑎 ) ) ) → ∃ 𝑥 ∈ ℕ ( 2 · ( 2 ↑ - ( ! ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝐵 / ( ( 2 ↑ ( ! ‘ 𝑥 ) ) ↑ 𝐴 ) ) ) |
121 |
10 120
|
rexlimddv |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℕ ( 2 · ( 2 ↑ - ( ! ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝐵 / ( ( 2 ↑ ( ! ‘ 𝑥 ) ) ↑ 𝐴 ) ) ) |