Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem1.a |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℤ ) ) |
2 |
|
aalioulem1.b |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
3 |
|
aalioulem1.c |
⊢ ( 𝜑 → 𝑌 ∈ ℕ ) |
4 |
2
|
zcnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
5 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
6 |
3
|
nnne0d |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
7 |
4 5 6
|
divcld |
⊢ ( 𝜑 → ( 𝑋 / 𝑌 ) ∈ ℂ ) |
8 |
|
eqid |
⊢ ( coeff ‘ 𝐹 ) = ( coeff ‘ 𝐹 ) |
9 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
10 |
8 9
|
coeid2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℤ ) ∧ ( 𝑋 / 𝑌 ) ∈ ℂ ) → ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) = Σ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) ) |
11 |
1 7 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) = Σ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) = ( Σ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) |
13 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( deg ‘ 𝐹 ) ) ∈ Fin ) |
14 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℤ ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
16 |
5 15
|
expcld |
⊢ ( 𝜑 → ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ∈ ℂ ) |
17 |
|
0z |
⊢ 0 ∈ ℤ |
18 |
8
|
coef2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℤ ) |
19 |
1 17 18
|
sylancl |
⊢ ( 𝜑 → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℤ ) |
20 |
|
elfznn0 |
⊢ ( 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → 𝑎 ∈ ℕ0 ) |
21 |
|
ffvelrn |
⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℤ ∧ 𝑎 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) ∈ ℤ ) |
22 |
19 20 21
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) ∈ ℤ ) |
23 |
22
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) ∈ ℂ ) |
24 |
|
expcl |
⊢ ( ( ( 𝑋 / 𝑌 ) ∈ ℂ ∧ 𝑎 ∈ ℕ0 ) → ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ∈ ℂ ) |
25 |
7 20 24
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ∈ ℂ ) |
26 |
23 25
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) ∈ ℂ ) |
27 |
13 16 26
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) = Σ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) |
28 |
12 27
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) = Σ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑌 ∈ ℂ ) |
30 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
31 |
29 30
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ∈ ℂ ) |
32 |
23 25 31
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) = ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) ) |
33 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑋 ∈ ℤ ) |
34 |
33
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑋 ∈ ℂ ) |
35 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑌 ≠ 0 ) |
36 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑎 ∈ ℕ0 ) |
37 |
34 29 35 36
|
expdivd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) = ( ( 𝑋 ↑ 𝑎 ) / ( 𝑌 ↑ 𝑎 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) = ( ( ( 𝑋 ↑ 𝑎 ) / ( 𝑌 ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) |
39 |
34 36
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑋 ↑ 𝑎 ) ∈ ℂ ) |
40 |
|
nnexpcl |
⊢ ( ( 𝑌 ∈ ℕ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑌 ↑ 𝑎 ) ∈ ℕ ) |
41 |
3 20 40
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑌 ↑ 𝑎 ) ∈ ℕ ) |
42 |
41
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑌 ↑ 𝑎 ) ∈ ℂ ) |
43 |
41
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑌 ↑ 𝑎 ) ≠ 0 ) |
44 |
39 42 31 43
|
div13d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( 𝑋 ↑ 𝑎 ) / ( 𝑌 ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) = ( ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) / ( 𝑌 ↑ 𝑎 ) ) · ( 𝑋 ↑ 𝑎 ) ) ) |
45 |
38 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) = ( ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) / ( 𝑌 ↑ 𝑎 ) ) · ( 𝑋 ↑ 𝑎 ) ) ) |
46 |
|
elfzelz |
⊢ ( 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → 𝑎 ∈ ℤ ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑎 ∈ ℤ ) |
48 |
30
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( deg ‘ 𝐹 ) ∈ ℤ ) |
49 |
29 35 47 48
|
expsubd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑌 ↑ ( ( deg ‘ 𝐹 ) − 𝑎 ) ) = ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) / ( 𝑌 ↑ 𝑎 ) ) ) |
50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑌 ∈ ℕ ) |
51 |
50
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑌 ∈ ℤ ) |
52 |
|
fznn0sub |
⊢ ( 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → ( ( deg ‘ 𝐹 ) − 𝑎 ) ∈ ℕ0 ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( deg ‘ 𝐹 ) − 𝑎 ) ∈ ℕ0 ) |
54 |
|
zexpcl |
⊢ ( ( 𝑌 ∈ ℤ ∧ ( ( deg ‘ 𝐹 ) − 𝑎 ) ∈ ℕ0 ) → ( 𝑌 ↑ ( ( deg ‘ 𝐹 ) − 𝑎 ) ) ∈ ℤ ) |
55 |
51 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑌 ↑ ( ( deg ‘ 𝐹 ) − 𝑎 ) ) ∈ ℤ ) |
56 |
49 55
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) / ( 𝑌 ↑ 𝑎 ) ) ∈ ℤ ) |
57 |
|
zexpcl |
⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑎 ) ∈ ℤ ) |
58 |
2 20 57
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑋 ↑ 𝑎 ) ∈ ℤ ) |
59 |
56 58
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) / ( 𝑌 ↑ 𝑎 ) ) · ( 𝑋 ↑ 𝑎 ) ) ∈ ℤ ) |
60 |
45 59
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ∈ ℤ ) |
61 |
22 60
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) ∈ ℤ ) |
62 |
32 61
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ∈ ℤ ) |
63 |
13 62
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑎 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 ) · ( ( 𝑋 / 𝑌 ) ↑ 𝑎 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ∈ ℤ ) |
64 |
28 63
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) · ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ∈ ℤ ) |