| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem2.a | ⊢ 𝑁  =  ( deg ‘ 𝐹 ) | 
						
							| 2 |  | aalioulem2.b | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 3 |  | aalioulem2.c | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | aalioulem2.d | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 6 |  | snssi | ⊢ ( 1  ∈  ℝ+  →  { 1 }  ⊆  ℝ+ ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ { 1 }  ⊆  ℝ+ | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ⊆  ℝ+ | 
						
							| 9 | 7 8 | unssi | ⊢ ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ⊆  ℝ+ | 
						
							| 10 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ ) | 
						
							| 12 |  | snfi | ⊢ { 1 }  ∈  Fin | 
						
							| 13 | 3 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 14 | 1 | eqcomi | ⊢ ( deg ‘ 𝐹 )  =  𝑁 | 
						
							| 15 |  | dgr0 | ⊢ ( deg ‘ 0𝑝 )  =  0 | 
						
							| 16 | 13 14 15 | 3netr4g | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ≠  ( deg ‘ 0𝑝 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝐹  =  0𝑝  →  ( deg ‘ 𝐹 )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 18 | 17 | necon3i | ⊢ ( ( deg ‘ 𝐹 )  ≠  ( deg ‘ 0𝑝 )  →  𝐹  ≠  0𝑝 ) | 
						
							| 19 | 16 18 | syl | ⊢ ( 𝜑  →  𝐹  ≠  0𝑝 ) | 
						
							| 20 |  | eqid | ⊢ ( ◡ 𝐹  “  { 0 } )  =  ( ◡ 𝐹  “  { 0 } ) | 
						
							| 21 | 20 | fta1 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℤ )  ∧  𝐹  ≠  0𝑝 )  →  ( ( ◡ 𝐹  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝐹  “  { 0 } ) )  ≤  ( deg ‘ 𝐹 ) ) ) | 
						
							| 22 | 2 19 21 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝐹  “  { 0 } ) )  ≤  ( deg ‘ 𝐹 ) ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { 0 } )  ∈  Fin ) | 
						
							| 24 |  | abrexfi | ⊢ ( ( ◡ 𝐹  “  { 0 } )  ∈  Fin  →  { 𝑎  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ∈  Fin ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  { 𝑎  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ∈  Fin ) | 
						
							| 26 |  | rabssab | ⊢ { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ⊆  { 𝑎  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } | 
						
							| 27 |  | ssfi | ⊢ ( ( { 𝑎  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ∈  Fin  ∧  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ⊆  { 𝑎  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  →  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ∈  Fin ) | 
						
							| 28 | 25 26 27 | sylancl | ⊢ ( 𝜑  →  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ∈  Fin ) | 
						
							| 29 |  | unfi | ⊢ ( ( { 1 }  ∈  Fin  ∧  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  ∈  Fin )  →  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ∈  Fin ) | 
						
							| 30 | 12 28 29 | sylancr | ⊢ ( 𝜑  →  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ∈  Fin ) | 
						
							| 31 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 32 | 31 | snid | ⊢ 1  ∈  { 1 } | 
						
							| 33 |  | elun1 | ⊢ ( 1  ∈  { 1 }  →  1  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ) | 
						
							| 34 |  | ne0i | ⊢ ( 1  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  →  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ≠  ∅ ) | 
						
							| 35 | 32 33 34 | mp2b | ⊢ ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ≠  ∅ | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ≠  ∅ ) | 
						
							| 37 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 38 | 9 37 | sstri | ⊢ ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ⊆  ℝ | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ⊆  ℝ ) | 
						
							| 40 |  | fiinfcl | ⊢ ( (  <   Or  ℝ  ∧  ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ∈  Fin  ∧  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ≠  ∅  ∧  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ⊆  ℝ ) )  →  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ) | 
						
							| 41 | 11 30 36 39 40 | syl13anc | ⊢ ( 𝜑  →  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ) | 
						
							| 42 | 9 41 | sselid | ⊢ ( 𝜑  →  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ∈  ℝ+ ) | 
						
							| 43 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 44 |  | rpge0 | ⊢ ( 𝑑  ∈  ℝ+  →  0  ≤  𝑑 ) | 
						
							| 45 | 44 | rgen | ⊢ ∀ 𝑑  ∈  ℝ+ 0  ≤  𝑑 | 
						
							| 46 |  | breq1 | ⊢ ( 𝑐  =  0  →  ( 𝑐  ≤  𝑑  ↔  0  ≤  𝑑 ) ) | 
						
							| 47 | 46 | ralbidv | ⊢ ( 𝑐  =  0  →  ( ∀ 𝑑  ∈  ℝ+ 𝑐  ≤  𝑑  ↔  ∀ 𝑑  ∈  ℝ+ 0  ≤  𝑑 ) ) | 
						
							| 48 | 47 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑑  ∈  ℝ+ 0  ≤  𝑑 )  →  ∃ 𝑐  ∈  ℝ ∀ 𝑑  ∈  ℝ+ 𝑐  ≤  𝑑 ) | 
						
							| 49 | 43 45 48 | mp2an | ⊢ ∃ 𝑐  ∈  ℝ ∀ 𝑑  ∈  ℝ+ 𝑐  ≤  𝑑 | 
						
							| 50 |  | ssralv | ⊢ ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ⊆  ℝ+  →  ( ∀ 𝑑  ∈  ℝ+ 𝑐  ≤  𝑑  →  ∀ 𝑑  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) 𝑐  ≤  𝑑 ) ) | 
						
							| 51 | 9 50 | ax-mp | ⊢ ( ∀ 𝑑  ∈  ℝ+ 𝑐  ≤  𝑑  →  ∀ 𝑑  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) 𝑐  ≤  𝑑 ) | 
						
							| 52 | 51 | reximi | ⊢ ( ∃ 𝑐  ∈  ℝ ∀ 𝑑  ∈  ℝ+ 𝑐  ≤  𝑑  →  ∃ 𝑐  ∈  ℝ ∀ 𝑑  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) 𝑐  ≤  𝑑 ) | 
						
							| 53 | 49 52 | ax-mp | ⊢ ∃ 𝑐  ∈  ℝ ∀ 𝑑  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) 𝑐  ≤  𝑑 | 
						
							| 54 |  | eqeq1 | ⊢ ( 𝑎  =  ( abs ‘ ( 𝐴  −  𝑟 ) )  →  ( 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) )  ↔  ( abs ‘ ( 𝐴  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) ) ) | 
						
							| 55 | 54 | rexbidv | ⊢ ( 𝑎  =  ( abs ‘ ( 𝐴  −  𝑟 ) )  →  ( ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) )  ↔  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) ( abs ‘ ( 𝐴  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) ) ) | 
						
							| 56 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 57 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  𝑟  ∈  ℝ ) | 
						
							| 58 | 56 57 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( 𝐴  −  𝑟 )  ∈  ℝ ) | 
						
							| 59 | 58 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( 𝐴  −  𝑟 )  ∈  ℂ ) | 
						
							| 60 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 61 | 60 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 62 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  𝑟  ∈  ℝ ) | 
						
							| 63 | 62 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  𝑟  ∈  ℂ ) | 
						
							| 64 | 61 63 | subeq0ad | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  ( ( 𝐴  −  𝑟 )  =  0  ↔  𝐴  =  𝑟 ) ) | 
						
							| 65 | 64 | necon3abid | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  ( ( 𝐴  −  𝑟 )  ≠  0  ↔  ¬  𝐴  =  𝑟 ) ) | 
						
							| 66 | 65 | biimprd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  ( ¬  𝐴  =  𝑟  →  ( 𝐴  −  𝑟 )  ≠  0 ) ) | 
						
							| 67 | 66 | impr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( 𝐴  −  𝑟 )  ≠  0 ) | 
						
							| 68 | 59 67 | absrpcld | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ℝ+ ) | 
						
							| 69 | 57 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  𝑟  ∈  ℂ ) | 
						
							| 70 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( 𝐹 ‘ 𝑟 )  =  0 ) | 
						
							| 71 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ ℤ )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 72 | 2 71 | syl | ⊢ ( 𝜑  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 73 | 72 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℂ ) | 
						
							| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  𝐹  Fn  ℂ ) | 
						
							| 75 |  | fniniseg | ⊢ ( 𝐹  Fn  ℂ  →  ( 𝑟  ∈  ( ◡ 𝐹  “  { 0 } )  ↔  ( 𝑟  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑟 )  =  0 ) ) ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( 𝑟  ∈  ( ◡ 𝐹  “  { 0 } )  ↔  ( 𝑟  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑟 )  =  0 ) ) ) | 
						
							| 77 | 69 70 76 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  𝑟  ∈  ( ◡ 𝐹  “  { 0 } ) ) | 
						
							| 78 |  | eqid | ⊢ ( abs ‘ ( 𝐴  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  𝑟 ) ) | 
						
							| 79 |  | oveq2 | ⊢ ( 𝑏  =  𝑟  →  ( 𝐴  −  𝑏 )  =  ( 𝐴  −  𝑟 ) ) | 
						
							| 80 | 79 | fveq2d | ⊢ ( 𝑏  =  𝑟  →  ( abs ‘ ( 𝐴  −  𝑏 ) )  =  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 81 | 80 | rspceeqv | ⊢ ( ( 𝑟  ∈  ( ◡ 𝐹  “  { 0 } )  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  →  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) ( abs ‘ ( 𝐴  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) ) | 
						
							| 82 | 77 78 81 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) ( abs ‘ ( 𝐴  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) ) | 
						
							| 83 | 55 68 82 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) | 
						
							| 84 |  | elun2 | ⊢ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) }  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ) | 
						
							| 86 |  | infrelb | ⊢ ( ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } )  ⊆  ℝ  ∧  ∃ 𝑐  ∈  ℝ ∀ 𝑑  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) 𝑐  ≤  𝑑  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) )  →  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 87 | 38 53 85 86 | mp3an12i | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( ( 𝐹 ‘ 𝑟 )  =  0  ∧  ¬  𝐴  =  𝑟 ) )  →  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 88 | 87 | expr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  ( ¬  𝐴  =  𝑟  →  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 89 | 88 | orrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ )  ∧  ( 𝐹 ‘ 𝑟 )  =  0 )  →  ( 𝐴  =  𝑟  ∨  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 90 | 89 | ex | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 91 | 90 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 92 |  | breq1 | ⊢ ( 𝑥  =  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  →  ( 𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) )  ↔  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 93 | 92 | orbi2d | ⊢ ( 𝑥  =  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  →  ( ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ↔  ( 𝐴  =  𝑟  ∨  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 94 | 93 | imbi2d | ⊢ ( 𝑥  =  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  →  ( ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  ↔  ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) ) | 
						
							| 95 | 94 | ralbidv | ⊢ ( 𝑥  =  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  →  ( ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  ↔  ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) ) | 
						
							| 96 | 95 | rspcev | ⊢ ( ( inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ∈  ℝ+  ∧  ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  inf ( ( { 1 }  ∪  { 𝑎  ∈  ℝ+  ∣  ∃ 𝑏  ∈  ( ◡ 𝐹  “  { 0 } ) 𝑎  =  ( abs ‘ ( 𝐴  −  𝑏 ) ) } ) ,  ℝ ,   <  )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 97 | 42 91 96 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 98 |  | fveqeq2 | ⊢ ( 𝑟  =  ( 𝑝  /  𝑞 )  →  ( ( 𝐹 ‘ 𝑟 )  =  0  ↔  ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0 ) ) | 
						
							| 99 |  | eqeq2 | ⊢ ( 𝑟  =  ( 𝑝  /  𝑞 )  →  ( 𝐴  =  𝑟  ↔  𝐴  =  ( 𝑝  /  𝑞 ) ) ) | 
						
							| 100 |  | oveq2 | ⊢ ( 𝑟  =  ( 𝑝  /  𝑞 )  →  ( 𝐴  −  𝑟 )  =  ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) | 
						
							| 101 | 100 | fveq2d | ⊢ ( 𝑟  =  ( 𝑝  /  𝑞 )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 102 | 101 | breq2d | ⊢ ( 𝑟  =  ( 𝑝  /  𝑞 )  →  ( 𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) )  ↔  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 103 | 99 102 | orbi12d | ⊢ ( 𝑟  =  ( 𝑝  /  𝑞 )  →  ( ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ↔  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 104 | 98 103 | imbi12d | ⊢ ( 𝑟  =  ( 𝑝  /  𝑞 )  →  ( ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  ↔  ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) ) | 
						
							| 105 | 104 | rspcv | ⊢ ( ( 𝑝  /  𝑞 )  ∈  ℝ  →  ( ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) ) | 
						
							| 106 |  | znq | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ )  →  ( 𝑝  /  𝑞 )  ∈  ℚ ) | 
						
							| 107 |  | qre | ⊢ ( ( 𝑝  /  𝑞 )  ∈  ℚ  →  ( 𝑝  /  𝑞 )  ∈  ℝ ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ )  →  ( 𝑝  /  𝑞 )  ∈  ℝ ) | 
						
							| 109 | 105 108 | syl11 | ⊢ ( ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) ) | 
						
							| 110 | 109 | ralrimivv | ⊢ ( ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 111 | 110 | reximi | ⊢ ( ∃ 𝑥  ∈  ℝ+ ∀ 𝑟  ∈  ℝ ( ( 𝐹 ‘ 𝑟 )  =  0  →  ( 𝐴  =  𝑟  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 112 | 97 111 | syl | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 113 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 114 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  𝑞  ∈  ℕ ) | 
						
							| 115 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 116 | 115 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 117 | 114 116 | nnexpcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑞 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 118 | 117 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑞 ↑ 𝑁 )  ∈  ℝ+ ) | 
						
							| 119 | 113 118 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ∈  ℝ+ ) | 
						
							| 120 | 119 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  ∧  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 122 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  ∧  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 123 | 122 | rpred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  ∧  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 124 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  𝐴  ∈  ℝ ) | 
						
							| 125 | 108 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑝  /  𝑞 )  ∈  ℝ ) | 
						
							| 126 | 124 125 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐴  −  ( 𝑝  /  𝑞 ) )  ∈  ℝ ) | 
						
							| 127 | 126 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐴  −  ( 𝑝  /  𝑞 ) )  ∈  ℂ ) | 
						
							| 128 | 127 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  ∈  ℝ ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  ∧  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  ∈  ℝ ) | 
						
							| 130 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 131 | 130 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 132 | 113 | rpcnne0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 133 |  | divid | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( 𝑥  /  𝑥 )  =  1 ) | 
						
							| 134 | 132 133 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑥  /  𝑥 )  =  1 ) | 
						
							| 135 | 117 | nnge1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  1  ≤  ( 𝑞 ↑ 𝑁 ) ) | 
						
							| 136 | 134 135 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑥  /  𝑥 )  ≤  ( 𝑞 ↑ 𝑁 ) ) | 
						
							| 137 | 131 113 118 136 | lediv23d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  𝑥 ) | 
						
							| 138 | 137 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  ∧  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  𝑥 ) | 
						
							| 139 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  ∧  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 140 | 121 123 129 138 139 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  ∧  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) | 
						
							| 141 | 140 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) )  →  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) | 
						
							| 142 | 141 | orim2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) )  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) | 
						
							| 143 | 142 | imim2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℕ ) )  →  ( ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) ) | 
						
							| 144 | 143 | ralimdvva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) )  →  ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) ) | 
						
							| 145 | 144 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  𝑥  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) ) | 
						
							| 146 | 112 145 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑝  ∈  ℤ ∀ 𝑞  ∈  ℕ ( ( 𝐹 ‘ ( 𝑝  /  𝑞 ) )  =  0  →  ( 𝐴  =  ( 𝑝  /  𝑞 )  ∨  ( 𝑥  /  ( 𝑞 ↑ 𝑁 ) )  ≤  ( abs ‘ ( 𝐴  −  ( 𝑝  /  𝑞 ) ) ) ) ) ) |