Metamath Proof Explorer


Theorem aannenlem2

Description: Lemma for aannen . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aannenlem.a 𝐻 = ( 𝑎 ∈ ℕ0 ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } )
Assertion aannenlem2 𝔸 = ran 𝐻

Proof

Step Hyp Ref Expression
1 aannenlem.a 𝐻 = ( 𝑎 ∈ ℕ0 ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } )
2 fveqeq2 ( 𝑏 = 𝑔 → ( ( 𝑐𝑏 ) = 0 ↔ ( 𝑐𝑔 ) = 0 ) )
3 2 rexbidv ( 𝑏 = 𝑔 → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 ↔ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑔 ) = 0 ) )
4 simp3 ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → 𝑔 ∈ ℂ )
5 neeq1 ( 𝑑 = → ( 𝑑 ≠ 0𝑝 ≠ 0𝑝 ) )
6 fveq2 ( 𝑑 = → ( deg ‘ 𝑑 ) = ( deg ‘ ) )
7 6 breq1d ( 𝑑 = → ( ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ↔ ( deg ‘ ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
8 fveq2 ( 𝑑 = → ( coeff ‘ 𝑑 ) = ( coeff ‘ ) )
9 8 fveq1d ( 𝑑 = → ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) = ( ( coeff ‘ ) ‘ 𝑒 ) )
10 9 fveq2d ( 𝑑 = → ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) )
11 10 breq1d ( 𝑑 = → ( ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ↔ ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
12 11 ralbidv ( 𝑑 = → ( ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ↔ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
13 5 7 12 3anbi123d ( 𝑑 = → ( ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ↔ ( ≠ 0𝑝 ∧ ( deg ‘ ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) )
14 eldifi ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ∈ ( Poly ‘ ℤ ) )
15 14 adantr ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ∈ ( Poly ‘ ℤ ) )
16 15 3adant2 ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∈ ( Poly ‘ ℤ ) )
17 eldifsni ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ≠ 0𝑝 )
18 17 adantr ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ≠ 0𝑝 )
19 0nn0 0 ∈ ℕ0
20 dgrcl ( ∈ ( Poly ‘ ℤ ) → ( deg ‘ ) ∈ ℕ0 )
21 15 20 syl ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( deg ‘ ) ∈ ℕ0 )
22 prssi ( ( 0 ∈ ℕ0 ∧ ( deg ‘ ) ∈ ℕ0 ) → { 0 , ( deg ‘ ) } ⊆ ℕ0 )
23 19 21 22 sylancr ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → { 0 , ( deg ‘ ) } ⊆ ℕ0 )
24 ssrab2 { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ⊆ ℕ0
25 24 a1i ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ⊆ ℕ0 )
26 23 25 unssd ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ⊆ ℕ0 )
27 nn0ssre 0 ⊆ ℝ
28 ressxr ℝ ⊆ ℝ*
29 27 28 sstri 0 ⊆ ℝ*
30 26 29 sstrdi ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* )
31 fvex ( deg ‘ ) ∈ V
32 31 prid2 ( deg ‘ ) ∈ { 0 , ( deg ‘ ) }
33 elun1 ( ( deg ‘ ) ∈ { 0 , ( deg ‘ ) } → ( deg ‘ ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
34 32 33 ax-mp ( deg ‘ ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } )
35 supxrub ( ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ∧ ( deg ‘ ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ) → ( deg ‘ ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) )
36 30 34 35 sylancl ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( deg ‘ ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) )
37 30 adantr ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* )
38 fveq2 ( ( ( coeff ‘ ) ‘ 𝑒 ) = 0 → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = ( abs ‘ 0 ) )
39 abs0 ( abs ‘ 0 ) = 0
40 38 39 eqtrdi ( ( ( coeff ‘ ) ‘ 𝑒 ) = 0 → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = 0 )
41 c0ex 0 ∈ V
42 41 prid1 0 ∈ { 0 , ( deg ‘ ) }
43 elun1 ( 0 ∈ { 0 , ( deg ‘ ) } → 0 ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
44 42 43 ax-mp 0 ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } )
45 40 44 eqeltrdi ( ( ( coeff ‘ ) ‘ 𝑒 ) = 0 → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
46 45 adantl ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) = 0 ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
47 eqeq1 ( 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) → ( 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) ↔ ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) ) )
48 47 rexbidv ( 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) → ( ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) ↔ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) ) )
49 0z 0 ∈ ℤ
50 eqid ( coeff ‘ ) = ( coeff ‘ )
51 50 coef2 ( ( ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → ( coeff ‘ ) : ℕ0 ⟶ ℤ )
52 15 49 51 sylancl ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( coeff ‘ ) : ℕ0 ⟶ ℤ )
53 52 ffvelrnda ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( ( coeff ‘ ) ‘ 𝑒 ) ∈ ℤ )
54 nn0abscl ( ( ( coeff ‘ ) ‘ 𝑒 ) ∈ ℤ → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ℕ0 )
55 53 54 syl ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ℕ0 )
56 55 adantr ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ℕ0 )
57 simplr ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ∈ ℕ0 )
58 21 ad2antrr ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → ( deg ‘ ) ∈ ℕ0 )
59 15 ad2antrr ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → ∈ ( Poly ‘ ℤ ) )
60 simpr ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 )
61 eqid ( deg ‘ ) = ( deg ‘ )
62 50 61 dgrub ( ( ∈ ( Poly ‘ ℤ ) ∧ 𝑒 ∈ ℕ0 ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ≤ ( deg ‘ ) )
63 59 57 60 62 syl3anc ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ≤ ( deg ‘ ) )
64 elfz2nn0 ( 𝑒 ∈ ( 0 ... ( deg ‘ ) ) ↔ ( 𝑒 ∈ ℕ0 ∧ ( deg ‘ ) ∈ ℕ0𝑒 ≤ ( deg ‘ ) ) )
65 57 58 63 64 syl3anbrc ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ∈ ( 0 ... ( deg ‘ ) ) )
66 eqid ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) )
67 2fveq3 ( 𝑖 = 𝑒 → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) )
68 67 rspceeqv ( ( 𝑒 ∈ ( 0 ... ( deg ‘ ) ) ∧ ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ) → ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) )
69 65 66 68 sylancl ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) )
70 48 56 69 elrabd ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } )
71 elun2 ( ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
72 70 71 syl ( ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ) ‘ 𝑒 ) ≠ 0 ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
73 46 72 pm2.61dane ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
74 supxrub ( ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ∧ ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) )
75 37 73 74 syl2anc ( ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) )
76 75 ralrimiva ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) )
77 18 36 76 3jca ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( ≠ 0𝑝 ∧ ( deg ‘ ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
78 77 3adant2 ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ( ≠ 0𝑝 ∧ ( deg ‘ ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
79 13 16 78 elrabd ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } )
80 simp2 ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ( 𝑔 ) = 0 )
81 fveq1 ( 𝑐 = → ( 𝑐𝑔 ) = ( 𝑔 ) )
82 81 eqeq1d ( 𝑐 = → ( ( 𝑐𝑔 ) = 0 ↔ ( 𝑔 ) = 0 ) )
83 82 rspcev ( ( ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ∧ ( 𝑔 ) = 0 ) → ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑔 ) = 0 )
84 79 80 83 syl2anc ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑔 ) = 0 )
85 3 4 84 elrabd ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } )
86 prfi { 0 , ( deg ‘ ) } ∈ Fin
87 fzfi ( 0 ... ( deg ‘ ) ) ∈ Fin
88 abrexfi ( ( 0 ... ( deg ‘ ) ) ∈ Fin → { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ∈ Fin )
89 87 88 ax-mp { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ∈ Fin
90 rabssab { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ⊆ { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) }
91 ssfi ( ( { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ∈ Fin ∧ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ⊆ { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) → { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ∈ Fin )
92 89 90 91 mp2an { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ∈ Fin
93 unfi ( ( { 0 , ( deg ‘ ) } ∈ Fin ∧ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ∈ Fin ) → ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ∈ Fin )
94 86 92 93 mp2an ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ∈ Fin
95 34 ne0ii ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ≠ ∅
96 xrltso < Or ℝ*
97 fisupcl ( ( < Or ℝ* ∧ ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ∈ Fin ∧ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ≠ ∅ ∧ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ) ) → sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
98 96 97 mpan ( ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ∈ Fin ∧ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ≠ ∅ ∧ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ) → sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
99 94 95 30 98 mp3an12i ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) )
100 26 99 sseldd ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ℕ0 )
101 100 3adant2 ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ℕ0 )
102 eqidd ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } )
103 breq2 ( 𝑎 = sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ( deg ‘ 𝑑 ) ≤ 𝑎 ↔ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
104 breq2 ( 𝑎 = sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
105 104 ralbidv ( 𝑎 = sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) )
106 103 105 3anbi23d ( 𝑎 = sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) ↔ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) )
107 106 rabbidv ( 𝑎 = sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } = { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } )
108 107 rexeqdv ( 𝑎 = sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 ↔ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 ) )
109 108 rabbidv ( 𝑎 = sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } )
110 109 rspceeqv ( ( sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ℕ0 ∧ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } ) → ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } )
111 101 102 110 syl2anc ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } )
112 cnex ℂ ∈ V
113 112 rabex { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } ∈ V
114 eleq2 ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } → ( 𝑔𝑓𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } ) )
115 eqeq1 ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } → ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ↔ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
116 115 rexbidv ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } → ( ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ↔ ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
117 114 116 anbi12d ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } → ( ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) ↔ ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } ∧ ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) ) )
118 113 117 spcev ( ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } ∧ ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) → ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
119 85 111 118 syl2anc ( ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
120 119 3exp ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( ( 𝑔 ) = 0 → ( 𝑔 ∈ ℂ → ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) ) ) )
121 120 rexlimiv ( ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 → ( 𝑔 ∈ ℂ → ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) ) )
122 121 impcom ( ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) → ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
123 eleq2 ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } → ( 𝑔𝑓𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
124 2 rexbidv ( 𝑏 = 𝑔 → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 ↔ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑔 ) = 0 ) )
125 124 elrab ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ↔ ( 𝑔 ∈ ℂ ∧ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑔 ) = 0 ) )
126 simp1 ( ( ≠ 0𝑝 ∧ ( deg ‘ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ 𝑎 ) → ≠ 0𝑝 )
127 126 anim2i ( ( ∈ ( Poly ‘ ℤ ) ∧ ( ≠ 0𝑝 ∧ ( deg ‘ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) → ( ∈ ( Poly ‘ ℤ ) ∧ ≠ 0𝑝 ) )
128 6 breq1d ( 𝑑 = → ( ( deg ‘ 𝑑 ) ≤ 𝑎 ↔ ( deg ‘ ) ≤ 𝑎 ) )
129 10 breq1d ( 𝑑 = → ( ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ 𝑎 ) )
130 129 ralbidv ( 𝑑 = → ( ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ 𝑎 ) )
131 5 128 130 3anbi123d ( 𝑑 = → ( ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) ↔ ( ≠ 0𝑝 ∧ ( deg ‘ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) )
132 131 elrab ( ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ↔ ( ∈ ( Poly ‘ ℤ ) ∧ ( ≠ 0𝑝 ∧ ( deg ‘ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) )
133 eldifsn ( ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ↔ ( ∈ ( Poly ‘ ℤ ) ∧ ≠ 0𝑝 ) )
134 127 132 133 3imtr4i ( ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } → ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) )
135 134 ssriv { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ⊆ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } )
136 ssrexv ( { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ⊆ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑔 ) = 0 → ∃ 𝑐 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑐𝑔 ) = 0 ) )
137 82 cbvrexvw ( ∃ 𝑐 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑐𝑔 ) = 0 ↔ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 )
138 136 137 syl6ib ( { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ⊆ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑔 ) = 0 → ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) )
139 135 138 ax-mp ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑔 ) = 0 → ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 )
140 139 anim2i ( ( 𝑔 ∈ ℂ ∧ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑔 ) = 0 ) → ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) )
141 125 140 sylbi ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } → ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) )
142 123 141 syl6bi ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } → ( 𝑔𝑓 → ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) ) )
143 142 rexlimivw ( ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } → ( 𝑔𝑓 → ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) ) )
144 143 impcom ( ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) → ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) )
145 144 exlimiv ( ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) → ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) )
146 122 145 impbii ( ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) ↔ ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
147 elaa ( 𝑔 ∈ 𝔸 ↔ ( 𝑔 ∈ ℂ ∧ ∃ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑔 ) = 0 ) )
148 eluniab ( 𝑔 { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } } ↔ ∃ 𝑓 ( 𝑔𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ) )
149 146 147 148 3bitr4i ( 𝑔 ∈ 𝔸 ↔ 𝑔 { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } } )
150 149 eqriv 𝔸 = { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } }
151 1 rnmpt ran 𝐻 = { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } }
152 151 unieqi ran 𝐻 = { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } }
153 150 152 eqtr4i 𝔸 = ran 𝐻