Step |
Hyp |
Ref |
Expression |
1 |
|
aannenlem.a |
⊢ 𝐻 = ( 𝑎 ∈ ℕ0 ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) |
2 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝑔 → ( ( 𝑐 ‘ 𝑏 ) = 0 ↔ ( 𝑐 ‘ 𝑔 ) = 0 ) ) |
3 |
2
|
rexbidv |
⊢ ( 𝑏 = 𝑔 → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 ↔ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑔 ) = 0 ) ) |
4 |
|
simp3 |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → 𝑔 ∈ ℂ ) |
5 |
|
neeq1 |
⊢ ( 𝑑 = ℎ → ( 𝑑 ≠ 0𝑝 ↔ ℎ ≠ 0𝑝 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑑 = ℎ → ( deg ‘ 𝑑 ) = ( deg ‘ ℎ ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑑 = ℎ → ( ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ↔ ( deg ‘ ℎ ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑑 = ℎ → ( coeff ‘ 𝑑 ) = ( coeff ‘ ℎ ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝑑 = ℎ → ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) = ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑑 = ℎ → ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑑 = ℎ → ( ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ↔ ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑑 = ℎ → ( ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ↔ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
13 |
5 7 12
|
3anbi123d |
⊢ ( 𝑑 = ℎ → ( ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ↔ ( ℎ ≠ 0𝑝 ∧ ( deg ‘ ℎ ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) ) |
14 |
|
eldifi |
⊢ ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ℎ ∈ ( Poly ‘ ℤ ) ) |
15 |
14
|
adantr |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ℎ ∈ ( Poly ‘ ℤ ) ) |
16 |
15
|
3adant2 |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ℎ ∈ ( Poly ‘ ℤ ) ) |
17 |
|
eldifsni |
⊢ ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ℎ ≠ 0𝑝 ) |
18 |
17
|
adantr |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ℎ ≠ 0𝑝 ) |
19 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
20 |
|
dgrcl |
⊢ ( ℎ ∈ ( Poly ‘ ℤ ) → ( deg ‘ ℎ ) ∈ ℕ0 ) |
21 |
15 20
|
syl |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( deg ‘ ℎ ) ∈ ℕ0 ) |
22 |
|
prssi |
⊢ ( ( 0 ∈ ℕ0 ∧ ( deg ‘ ℎ ) ∈ ℕ0 ) → { 0 , ( deg ‘ ℎ ) } ⊆ ℕ0 ) |
23 |
19 21 22
|
sylancr |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → { 0 , ( deg ‘ ℎ ) } ⊆ ℕ0 ) |
24 |
|
ssrab2 |
⊢ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ⊆ ℕ0 |
25 |
24
|
a1i |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ⊆ ℕ0 ) |
26 |
23 25
|
unssd |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ⊆ ℕ0 ) |
27 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
28 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
29 |
27 28
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
30 |
26 29
|
sstrdi |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ) |
31 |
|
fvex |
⊢ ( deg ‘ ℎ ) ∈ V |
32 |
31
|
prid2 |
⊢ ( deg ‘ ℎ ) ∈ { 0 , ( deg ‘ ℎ ) } |
33 |
|
elun1 |
⊢ ( ( deg ‘ ℎ ) ∈ { 0 , ( deg ‘ ℎ ) } → ( deg ‘ ℎ ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
34 |
32 33
|
ax-mp |
⊢ ( deg ‘ ℎ ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) |
35 |
|
supxrub |
⊢ ( ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ∧ ( deg ‘ ℎ ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) → ( deg ‘ ℎ ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) |
36 |
30 34 35
|
sylancl |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( deg ‘ ℎ ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) |
37 |
30
|
adantr |
⊢ ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ) |
38 |
|
fveq2 |
⊢ ( ( ( coeff ‘ ℎ ) ‘ 𝑒 ) = 0 → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = ( abs ‘ 0 ) ) |
39 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
40 |
38 39
|
eqtrdi |
⊢ ( ( ( coeff ‘ ℎ ) ‘ 𝑒 ) = 0 → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = 0 ) |
41 |
|
c0ex |
⊢ 0 ∈ V |
42 |
41
|
prid1 |
⊢ 0 ∈ { 0 , ( deg ‘ ℎ ) } |
43 |
|
elun1 |
⊢ ( 0 ∈ { 0 , ( deg ‘ ℎ ) } → 0 ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
44 |
42 43
|
ax-mp |
⊢ 0 ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) |
45 |
40 44
|
eqeltrdi |
⊢ ( ( ( coeff ‘ ℎ ) ‘ 𝑒 ) = 0 → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
46 |
45
|
adantl |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) = 0 ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
47 |
|
eqeq1 |
⊢ ( 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) → ( 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) ↔ ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) ) ) |
48 |
47
|
rexbidv |
⊢ ( 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) → ( ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) ↔ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) ) ) |
49 |
|
0z |
⊢ 0 ∈ ℤ |
50 |
|
eqid |
⊢ ( coeff ‘ ℎ ) = ( coeff ‘ ℎ ) |
51 |
50
|
coef2 |
⊢ ( ( ℎ ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → ( coeff ‘ ℎ ) : ℕ0 ⟶ ℤ ) |
52 |
15 49 51
|
sylancl |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( coeff ‘ ℎ ) : ℕ0 ⟶ ℤ ) |
53 |
52
|
ffvelrnda |
⊢ ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ∈ ℤ ) |
54 |
|
nn0abscl |
⊢ ( ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ∈ ℤ → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ℕ0 ) |
55 |
53 54
|
syl |
⊢ ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ℕ0 ) |
56 |
55
|
adantr |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ℕ0 ) |
57 |
|
simplr |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ∈ ℕ0 ) |
58 |
21
|
ad2antrr |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → ( deg ‘ ℎ ) ∈ ℕ0 ) |
59 |
15
|
ad2antrr |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → ℎ ∈ ( Poly ‘ ℤ ) ) |
60 |
|
simpr |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) |
61 |
|
eqid |
⊢ ( deg ‘ ℎ ) = ( deg ‘ ℎ ) |
62 |
50 61
|
dgrub |
⊢ ( ( ℎ ∈ ( Poly ‘ ℤ ) ∧ 𝑒 ∈ ℕ0 ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ≤ ( deg ‘ ℎ ) ) |
63 |
59 57 60 62
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ≤ ( deg ‘ ℎ ) ) |
64 |
|
elfz2nn0 |
⊢ ( 𝑒 ∈ ( 0 ... ( deg ‘ ℎ ) ) ↔ ( 𝑒 ∈ ℕ0 ∧ ( deg ‘ ℎ ) ∈ ℕ0 ∧ 𝑒 ≤ ( deg ‘ ℎ ) ) ) |
65 |
57 58 63 64
|
syl3anbrc |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → 𝑒 ∈ ( 0 ... ( deg ‘ ℎ ) ) ) |
66 |
|
eqid |
⊢ ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) |
67 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑒 → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ) |
68 |
67
|
rspceeqv |
⊢ ( ( 𝑒 ∈ ( 0 ... ( deg ‘ ℎ ) ) ∧ ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ) → ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) ) |
69 |
65 66 68
|
sylancl |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) ) |
70 |
48 56 69
|
elrabd |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) |
71 |
|
elun2 |
⊢ ( ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
72 |
70 71
|
syl |
⊢ ( ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) ∧ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ≠ 0 ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
73 |
46 72
|
pm2.61dane |
⊢ ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
74 |
|
supxrub |
⊢ ( ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ∧ ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) |
75 |
37 73 74
|
syl2anc |
⊢ ( ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) ∧ 𝑒 ∈ ℕ0 ) → ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) |
76 |
75
|
ralrimiva |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) |
77 |
18 36 76
|
3jca |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → ( ℎ ≠ 0𝑝 ∧ ( deg ‘ ℎ ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
78 |
77
|
3adant2 |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ( ℎ ≠ 0𝑝 ∧ ( deg ‘ ℎ ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
79 |
13 16 78
|
elrabd |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ℎ ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ) |
80 |
|
simp2 |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ( ℎ ‘ 𝑔 ) = 0 ) |
81 |
|
fveq1 |
⊢ ( 𝑐 = ℎ → ( 𝑐 ‘ 𝑔 ) = ( ℎ ‘ 𝑔 ) ) |
82 |
81
|
eqeq1d |
⊢ ( 𝑐 = ℎ → ( ( 𝑐 ‘ 𝑔 ) = 0 ↔ ( ℎ ‘ 𝑔 ) = 0 ) ) |
83 |
82
|
rspcev |
⊢ ( ( ℎ ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ∧ ( ℎ ‘ 𝑔 ) = 0 ) → ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑔 ) = 0 ) |
84 |
79 80 83
|
syl2anc |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑔 ) = 0 ) |
85 |
3 4 84
|
elrabd |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) |
86 |
|
prfi |
⊢ { 0 , ( deg ‘ ℎ ) } ∈ Fin |
87 |
|
fzfi |
⊢ ( 0 ... ( deg ‘ ℎ ) ) ∈ Fin |
88 |
|
abrexfi |
⊢ ( ( 0 ... ( deg ‘ ℎ ) ) ∈ Fin → { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ∈ Fin ) |
89 |
87 88
|
ax-mp |
⊢ { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ∈ Fin |
90 |
|
rabssab |
⊢ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ⊆ { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } |
91 |
|
ssfi |
⊢ ( ( { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ∈ Fin ∧ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ⊆ { 𝑔 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) → { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ∈ Fin ) |
92 |
89 90 91
|
mp2an |
⊢ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ∈ Fin |
93 |
|
unfi |
⊢ ( ( { 0 , ( deg ‘ ℎ ) } ∈ Fin ∧ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ∈ Fin ) → ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ∈ Fin ) |
94 |
86 92 93
|
mp2an |
⊢ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ∈ Fin |
95 |
34
|
ne0ii |
⊢ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ≠ ∅ |
96 |
|
xrltso |
⊢ < Or ℝ* |
97 |
|
fisupcl |
⊢ ( ( < Or ℝ* ∧ ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ∈ Fin ∧ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ≠ ∅ ∧ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ) ) → sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
98 |
96 97
|
mpan |
⊢ ( ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ∈ Fin ∧ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ≠ ∅ ∧ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ⊆ ℝ* ) → sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
99 |
94 95 30 98
|
mp3an12i |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) ) |
100 |
26 99
|
sseldd |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ 𝑔 ∈ ℂ ) → sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ℕ0 ) |
101 |
100
|
3adant2 |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ℕ0 ) |
102 |
|
eqidd |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) |
103 |
|
breq2 |
⊢ ( 𝑎 = sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ( deg ‘ 𝑑 ) ≤ 𝑎 ↔ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
104 |
|
breq2 |
⊢ ( 𝑎 = sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
105 |
104
|
ralbidv |
⊢ ( 𝑎 = sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) |
106 |
103 105
|
3anbi23d |
⊢ ( 𝑎 = sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) ↔ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) ) ) |
107 |
106
|
rabbidv |
⊢ ( 𝑎 = sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } = { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ) |
108 |
107
|
rexeqdv |
⊢ ( 𝑎 = sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 ↔ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 ) ) |
109 |
108
|
rabbidv |
⊢ ( 𝑎 = sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) → { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) |
110 |
109
|
rspceeqv |
⊢ ( ( sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∈ ℕ0 ∧ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) → ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) |
111 |
101 102 110
|
syl2anc |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) |
112 |
|
cnex |
⊢ ℂ ∈ V |
113 |
112
|
rabex |
⊢ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ∈ V |
114 |
|
eleq2 |
⊢ ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( 𝑔 ∈ 𝑓 ↔ 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
115 |
|
eqeq1 |
⊢ ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ↔ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
116 |
115
|
rexbidv |
⊢ ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ↔ ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
117 |
114 116
|
anbi12d |
⊢ ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ↔ ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ∧ ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) ) |
118 |
113 117
|
spcev |
⊢ ( ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } ∧ ∃ 𝑎 ∈ ℕ0 { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ sup ( ( { 0 , ( deg ‘ ℎ ) } ∪ { 𝑔 ∈ ℕ0 ∣ ∃ 𝑖 ∈ ( 0 ... ( deg ‘ ℎ ) ) 𝑔 = ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑖 ) ) } ) , ℝ* , < ) ) } ( 𝑐 ‘ 𝑏 ) = 0 } = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) → ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
119 |
85 111 118
|
syl2anc |
⊢ ( ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ℎ ‘ 𝑔 ) = 0 ∧ 𝑔 ∈ ℂ ) → ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
120 |
119
|
3exp |
⊢ ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( ( ℎ ‘ 𝑔 ) = 0 → ( 𝑔 ∈ ℂ → ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) ) ) |
121 |
120
|
rexlimiv |
⊢ ( ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 → ( 𝑔 ∈ ℂ → ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) ) |
122 |
121
|
impcom |
⊢ ( ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) → ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
123 |
|
eleq2 |
⊢ ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( 𝑔 ∈ 𝑓 ↔ 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
124 |
2
|
rexbidv |
⊢ ( 𝑏 = 𝑔 → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 ↔ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑔 ) = 0 ) ) |
125 |
124
|
elrab |
⊢ ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ↔ ( 𝑔 ∈ ℂ ∧ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑔 ) = 0 ) ) |
126 |
|
simp1 |
⊢ ( ( ℎ ≠ 0𝑝 ∧ ( deg ‘ ℎ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ 𝑎 ) → ℎ ≠ 0𝑝 ) |
127 |
126
|
anim2i |
⊢ ( ( ℎ ∈ ( Poly ‘ ℤ ) ∧ ( ℎ ≠ 0𝑝 ∧ ( deg ‘ ℎ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) → ( ℎ ∈ ( Poly ‘ ℤ ) ∧ ℎ ≠ 0𝑝 ) ) |
128 |
6
|
breq1d |
⊢ ( 𝑑 = ℎ → ( ( deg ‘ 𝑑 ) ≤ 𝑎 ↔ ( deg ‘ ℎ ) ≤ 𝑎 ) ) |
129 |
10
|
breq1d |
⊢ ( 𝑑 = ℎ → ( ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) |
130 |
129
|
ralbidv |
⊢ ( 𝑑 = ℎ → ( ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ↔ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) |
131 |
5 128 130
|
3anbi123d |
⊢ ( 𝑑 = ℎ → ( ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) ↔ ( ℎ ≠ 0𝑝 ∧ ( deg ‘ ℎ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) ) |
132 |
131
|
elrab |
⊢ ( ℎ ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ↔ ( ℎ ∈ ( Poly ‘ ℤ ) ∧ ( ℎ ≠ 0𝑝 ∧ ( deg ‘ ℎ ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ ℎ ) ‘ 𝑒 ) ) ≤ 𝑎 ) ) ) |
133 |
|
eldifsn |
⊢ ( ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ↔ ( ℎ ∈ ( Poly ‘ ℤ ) ∧ ℎ ≠ 0𝑝 ) ) |
134 |
127 132 133
|
3imtr4i |
⊢ ( ℎ ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } → ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
135 |
134
|
ssriv |
⊢ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ⊆ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) |
136 |
|
ssrexv |
⊢ ( { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ⊆ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑔 ) = 0 → ∃ 𝑐 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑐 ‘ 𝑔 ) = 0 ) ) |
137 |
82
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑐 ‘ 𝑔 ) = 0 ↔ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) |
138 |
136 137
|
syl6ib |
⊢ ( { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ⊆ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑔 ) = 0 → ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) |
139 |
135 138
|
ax-mp |
⊢ ( ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑔 ) = 0 → ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) |
140 |
139
|
anim2i |
⊢ ( ( 𝑔 ∈ ℂ ∧ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑔 ) = 0 ) → ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) |
141 |
125 140
|
sylbi |
⊢ ( 𝑔 ∈ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) |
142 |
123 141
|
syl6bi |
⊢ ( 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( 𝑔 ∈ 𝑓 → ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) ) |
143 |
142
|
rexlimivw |
⊢ ( ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } → ( 𝑔 ∈ 𝑓 → ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) ) |
144 |
143
|
impcom |
⊢ ( ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) → ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) |
145 |
144
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) → ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) |
146 |
122 145
|
impbii |
⊢ ( ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ↔ ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
147 |
|
elaa |
⊢ ( 𝑔 ∈ 𝔸 ↔ ( 𝑔 ∈ ℂ ∧ ∃ ℎ ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ℎ ‘ 𝑔 ) = 0 ) ) |
148 |
|
eluniab |
⊢ ( 𝑔 ∈ ∪ { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } } ↔ ∃ 𝑓 ( 𝑔 ∈ 𝑓 ∧ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) ) |
149 |
146 147 148
|
3bitr4i |
⊢ ( 𝑔 ∈ 𝔸 ↔ 𝑔 ∈ ∪ { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } } ) |
150 |
149
|
eqriv |
⊢ 𝔸 = ∪ { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } } |
151 |
1
|
rnmpt |
⊢ ran 𝐻 = { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } } |
152 |
151
|
unieqi |
⊢ ∪ ran 𝐻 = ∪ { 𝑓 ∣ ∃ 𝑎 ∈ ℕ0 𝑓 = { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } } |
153 |
150 152
|
eqtr4i |
⊢ 𝔸 = ∪ ran 𝐻 |