Metamath Proof Explorer


Theorem ab0OLD

Description: Obsolete version of ab0 as of 8-Sep-2024. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ab0OLD ( { 𝑥𝜑 } = ∅ ↔ ∀ 𝑥 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 dfnul4 ∅ = { 𝑥 ∣ ⊥ }
2 1 eqeq2i ( { 𝑥𝜑 } = ∅ ↔ { 𝑥𝜑 } = { 𝑥 ∣ ⊥ } )
3 dfcleq ( { 𝑥𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) )
4 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
5 sb6 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
6 4 5 bitri ( 𝑦 ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
7 df-clab ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ )
8 sbv ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ )
9 7 8 bitri ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ ⊥ )
10 6 9 bibi12i ( ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ⊥ ) )
11 10 albii ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ⊥ ) )
12 nbfal ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ⊥ ) )
13 12 bicomi ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ⊥ ) ↔ ¬ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
14 13 albii ( ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ⊥ ) ↔ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
15 nfna1 𝑥 ¬ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 )
16 nfv 𝑦 ¬ 𝜑
17 pm2.27 ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
18 17 spsd ( 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
19 18 equcoms ( 𝑦 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
20 ax12v ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
21 20 equcoms ( 𝑦 = 𝑥 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
22 19 21 impbid ( 𝑦 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 ) )
23 22 notbid ( 𝑦 = 𝑥 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ¬ 𝜑 ) )
24 15 16 23 cbvalv1 ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥 ¬ 𝜑 )
25 11 14 24 3bitri ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑥 ¬ 𝜑 )
26 2 3 25 3bitri ( { 𝑥𝜑 } = ∅ ↔ ∀ 𝑥 ¬ 𝜑 )