Step |
Hyp |
Ref |
Expression |
1 |
|
dfnul4 |
⊢ ∅ = { 𝑥 ∣ ⊥ } |
2 |
1
|
eqeq2i |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ) |
3 |
|
dfcleq |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
4 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
5 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
6 |
4 5
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
7 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ ) |
8 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ ) |
9 |
7 8
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ ⊥ ) |
10 |
6 9
|
bibi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ⊥ ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ⊥ ) ) |
12 |
|
nbfal |
⊢ ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ⊥ ) ) |
13 |
12
|
bicomi |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ⊥ ) ↔ ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
14 |
13
|
albii |
⊢ ( ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ⊥ ) ↔ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
15 |
|
nfna1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) |
16 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝜑 |
17 |
|
pm2.27 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
18 |
17
|
spsd |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
19 |
18
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
20 |
|
ax12v |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
21 |
20
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
22 |
19 21
|
impbid |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ 𝜑 ) ) |
23 |
22
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ¬ 𝜑 ) ) |
24 |
15 16 23
|
cbvalv1 |
⊢ ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ¬ 𝜑 ) |
25 |
11 14 24
|
3bitri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑥 ¬ 𝜑 ) |
26 |
2 3 25
|
3bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑥 ¬ 𝜑 ) |