| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
nf3 |
⊢ ( Ⅎ 𝑦 𝜑 ↔ ( ∀ 𝑦 𝜑 ∨ ∀ 𝑦 ¬ 𝜑 ) ) |
| 3 |
1 2
|
mpbi |
⊢ ( ∀ 𝑦 𝜑 ∨ ∀ 𝑦 ¬ 𝜑 ) |
| 4 |
|
tbtru |
⊢ ( 𝜑 ↔ ( 𝜑 ↔ ⊤ ) ) |
| 5 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 6 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
| 7 |
5 6
|
bitr2i |
⊢ ( 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
| 8 |
|
tru |
⊢ ⊤ |
| 9 |
|
vextru |
⊢ 𝑦 ∈ { 𝑥 ∣ ⊤ } |
| 10 |
8 9
|
2th |
⊢ ( ⊤ ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) |
| 11 |
7 10
|
bibi12i |
⊢ ( ( 𝜑 ↔ ⊤ ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 12 |
4 11
|
bitri |
⊢ ( 𝜑 ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 14 |
|
dfcleq |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 15 |
|
dfv2 |
⊢ V = { 𝑥 ∣ ⊤ } |
| 16 |
15
|
eqcomi |
⊢ { 𝑥 ∣ ⊤ } = V |
| 17 |
16
|
eqeq2i |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ↔ { 𝑥 ∣ 𝜑 } = V ) |
| 18 |
13 14 17
|
3bitr2i |
⊢ ( ∀ 𝑦 𝜑 ↔ { 𝑥 ∣ 𝜑 } = V ) |
| 19 |
|
equid |
⊢ 𝑦 = 𝑦 |
| 20 |
19
|
nbn3 |
⊢ ( ¬ 𝜑 ↔ ( 𝜑 ↔ ¬ 𝑦 = 𝑦 ) ) |
| 21 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ↔ [ 𝑦 / 𝑥 ] ¬ 𝑥 = 𝑥 ) |
| 22 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 23 |
22 19
|
2th |
⊢ ( 𝑥 = 𝑥 ↔ 𝑦 = 𝑦 ) |
| 24 |
23
|
notbii |
⊢ ( ¬ 𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦 ) |
| 25 |
24
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦 ) ) |
| 26 |
25
|
sbievw |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝑥 = 𝑥 ↔ ¬ 𝑦 = 𝑦 ) |
| 27 |
21 26
|
bitr2i |
⊢ ( ¬ 𝑦 = 𝑦 ↔ 𝑦 ∈ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ) |
| 28 |
7 27
|
bibi12i |
⊢ ( ( 𝜑 ↔ ¬ 𝑦 = 𝑦 ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ) ) |
| 29 |
20 28
|
bitri |
⊢ ( ¬ 𝜑 ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ) ) |
| 30 |
29
|
albii |
⊢ ( ∀ 𝑦 ¬ 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ) ) |
| 31 |
|
dfcleq |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ) ) |
| 32 |
|
dfnul2 |
⊢ ∅ = { 𝑥 ∣ ¬ 𝑥 = 𝑥 } |
| 33 |
32
|
eqcomi |
⊢ { 𝑥 ∣ ¬ 𝑥 = 𝑥 } = ∅ |
| 34 |
33
|
eqeq2i |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ¬ 𝑥 = 𝑥 } ↔ { 𝑥 ∣ 𝜑 } = ∅ ) |
| 35 |
30 31 34
|
3bitr2i |
⊢ ( ∀ 𝑦 ¬ 𝜑 ↔ { 𝑥 ∣ 𝜑 } = ∅ ) |
| 36 |
18 35
|
orbi12i |
⊢ ( ( ∀ 𝑦 𝜑 ∨ ∀ 𝑦 ¬ 𝜑 ) ↔ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) ) |
| 37 |
3 36
|
mpbi |
⊢ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) |