| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ab0w.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
dfnul4 |
⊢ ∅ = { 𝑥 ∣ ⊥ } |
| 3 |
2
|
eqeq2i |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ) |
| 4 |
|
dfcleq |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
| 5 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 6 |
1
|
sbievw |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 7 |
5 6
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
| 8 |
7
|
bibi1i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
| 9 |
|
bicom |
⊢ ( ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
| 12 |
4 11
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
| 13 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ ) |
| 14 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ ) |
| 15 |
13 14
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ ⊥ ) |
| 16 |
15
|
bibi1i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ↔ ( ⊥ ↔ 𝜓 ) ) |
| 17 |
16
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ↔ ∀ 𝑦 ( ⊥ ↔ 𝜓 ) ) |
| 18 |
|
falim |
⊢ ( ⊥ → ( 𝜓 → ¬ 𝜓 ) ) |
| 19 |
|
idd |
⊢ ( ¬ ⊥ → ( ¬ 𝜓 → ¬ 𝜓 ) ) |
| 20 |
18 19
|
bija |
⊢ ( ( ⊥ ↔ 𝜓 ) → ¬ 𝜓 ) |
| 21 |
|
falim |
⊢ ( ⊥ → 𝜓 ) |
| 22 |
|
id |
⊢ ( 𝜓 → 𝜓 ) |
| 23 |
21 22
|
pm5.21ni |
⊢ ( ¬ 𝜓 → ( ⊥ ↔ 𝜓 ) ) |
| 24 |
20 23
|
impbii |
⊢ ( ( ⊥ ↔ 𝜓 ) ↔ ¬ 𝜓 ) |
| 25 |
24
|
albii |
⊢ ( ∀ 𝑦 ( ⊥ ↔ 𝜓 ) ↔ ∀ 𝑦 ¬ 𝜓 ) |
| 26 |
17 25
|
bitri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ↔ ∀ 𝑦 ¬ 𝜓 ) |
| 27 |
12 26
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ¬ 𝜓 ) |
| 28 |
3 27
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜓 ) |