Step |
Hyp |
Ref |
Expression |
1 |
|
ab0w.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
dfnul4 |
⊢ ∅ = { 𝑥 ∣ ⊥ } |
3 |
2
|
eqeq2i |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ) |
4 |
|
dfcleq |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
5 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
6 |
1
|
sbievw |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
7 |
5 6
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
8 |
7
|
bibi1i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
9 |
|
bicom |
⊢ ( ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
10 |
8 9
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
12 |
4 11
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ) |
13 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ ) |
14 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ ) |
15 |
13 14
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ ⊥ ) |
16 |
15
|
bibi1i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ↔ ( ⊥ ↔ 𝜓 ) ) |
17 |
16
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ↔ ∀ 𝑦 ( ⊥ ↔ 𝜓 ) ) |
18 |
|
falim |
⊢ ( ⊥ → ( 𝜓 → ¬ 𝜓 ) ) |
19 |
|
idd |
⊢ ( ¬ ⊥ → ( ¬ 𝜓 → ¬ 𝜓 ) ) |
20 |
18 19
|
bija |
⊢ ( ( ⊥ ↔ 𝜓 ) → ¬ 𝜓 ) |
21 |
|
falim |
⊢ ( ⊥ → 𝜓 ) |
22 |
|
id |
⊢ ( 𝜓 → 𝜓 ) |
23 |
21 22
|
pm5.21ni |
⊢ ( ¬ 𝜓 → ( ⊥ ↔ 𝜓 ) ) |
24 |
20 23
|
impbii |
⊢ ( ( ⊥ ↔ 𝜓 ) ↔ ¬ 𝜓 ) |
25 |
24
|
albii |
⊢ ( ∀ 𝑦 ( ⊥ ↔ 𝜓 ) ↔ ∀ 𝑦 ¬ 𝜓 ) |
26 |
17 25
|
bitri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ 𝜓 ) ↔ ∀ 𝑦 ¬ 𝜓 ) |
27 |
12 26
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ¬ 𝜓 ) |
28 |
3 27
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜓 ) |