Metamath Proof Explorer


Theorem abbi

Description: Equivalent formulas define equal class abstractions, and conversely. (Contributed by NM, 25-Nov-2013) (Revised by Mario Carneiro, 11-Aug-2016) Remove dependency on ax-8 and df-clel (by avoiding use of cleqh ). (Revised by BJ, 23-Jun-2019)

Ref Expression
Assertion abbi ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ { 𝑥𝜑 } = { 𝑥𝜓 } )

Proof

Step Hyp Ref Expression
1 dfcleq ( { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥𝜓 } ) )
2 nfsab1 𝑥 𝑦 ∈ { 𝑥𝜑 }
3 nfsab1 𝑥 𝑦 ∈ { 𝑥𝜓 }
4 2 3 nfbi 𝑥 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥𝜓 } )
5 nfv 𝑦 ( 𝜑𝜓 )
6 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
7 sbequ12r ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] 𝜑𝜑 ) )
8 6 7 bitrid ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝜑 ) )
9 df-clab ( 𝑦 ∈ { 𝑥𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 )
10 sbequ12r ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] 𝜓𝜓 ) )
11 9 10 bitrid ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥𝜓 } ↔ 𝜓 ) )
12 8 11 bibi12d ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥𝜓 } ) ↔ ( 𝜑𝜓 ) ) )
13 4 5 12 cbvalv1 ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥𝜓 } ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) )
14 1 13 bitr2i ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ { 𝑥𝜑 } = { 𝑥𝜓 } )