Metamath Proof Explorer


Theorem abbiOLD

Description: Obsolete proof of abbi as of 7-Jan-2024. (Contributed by NM, 25-Nov-2013) (Revised by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 16-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion abbiOLD ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ { 𝑥𝜑 } = { 𝑥𝜓 } )

Proof

Step Hyp Ref Expression
1 hbab1 ( 𝑦 ∈ { 𝑥𝜑 } → ∀ 𝑥 𝑦 ∈ { 𝑥𝜑 } )
2 hbab1 ( 𝑦 ∈ { 𝑥𝜓 } → ∀ 𝑥 𝑦 ∈ { 𝑥𝜓 } )
3 1 2 cleqh ( { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑥𝜓 } ) )
4 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
5 abid ( 𝑥 ∈ { 𝑥𝜓 } ↔ 𝜓 )
6 4 5 bibi12i ( ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑥𝜓 } ) ↔ ( 𝜑𝜓 ) )
7 6 albii ( ∀ 𝑥 ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑥𝜓 } ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) )
8 3 7 bitr2i ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ { 𝑥𝜑 } = { 𝑥𝜓 } )