Metamath Proof Explorer


Theorem abcdtb

Description: Given (((a and b) and c) and d), there exists a proof for b. (Contributed by Jarvin Udandy, 3-Sep-2016)

Ref Expression
Hypothesis abcdtb.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 )
Assertion abcdtb 𝜓

Proof

Step Hyp Ref Expression
1 abcdtb.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 )
2 1 simpli ( ( 𝜑𝜓 ) ∧ 𝜒 )
3 2 simpli ( 𝜑𝜓 )
4 3 simpri 𝜓