Metamath Proof Explorer


Theorem abciffcbatnabciffncbai

Description: Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis abciffcbatnabciffncbai.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )
Assertion abciffcbatnabciffncbai ( ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) → ¬ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 abciffcbatnabciffncbai.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )
2 notbi ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒𝜓 ) ∧ 𝜑 ) ) ↔ ( ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ¬ ( ( 𝜒𝜓 ) ∧ 𝜑 ) ) )
3 2 biimpi ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒𝜓 ) ∧ 𝜑 ) ) → ( ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ¬ ( ( 𝜒𝜓 ) ∧ 𝜑 ) ) )
4 1 3 ax-mp ( ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ¬ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )
5 4 biimpi ( ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) → ¬ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )