Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
7 |
1 2 3 4 5 6
|
abelthlem4 |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
8 |
1 2 3 4 5 6
|
abelthlem9 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) |
9 |
1 2 3 4 5
|
abelthlem2 |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
10 |
9
|
simpld |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ 𝑆 ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
13 |
11 12
|
ovresd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 1 ( abs ∘ − ) 𝑦 ) ) |
14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
15 |
5
|
ssrab3 |
⊢ 𝑆 ⊆ ℂ |
16 |
15 12
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
17 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
18 |
17
|
cnmetdval |
⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 1 − 𝑦 ) ) ) |
19 |
14 16 18
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 1 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 1 − 𝑦 ) ) ) |
20 |
13 19
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( abs ‘ ( 1 − 𝑦 ) ) ) |
21 |
20
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 ↔ ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 ) ) |
22 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
23 |
22 11
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑆 ⟶ ℂ ) |
25 |
24
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
26 |
17
|
cnmetdval |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
28 |
27
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ↔ ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) |
29 |
21 28
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ↔ ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) ) |
30 |
29
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) ) |
31 |
30
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) ) |
32 |
8 31
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) |
33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) |
34 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
35 |
|
xmetres2 |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ) |
36 |
34 15 35
|
mp2an |
⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) |
37 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) |
38 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
39 |
38
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
40 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) |
41 |
37 39 40
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) ) |
42 |
34 15 41
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) |
43 |
42 39
|
metcnp |
⊢ ( ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ 𝑆 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
44 |
36 34 10 43
|
mp3an12i |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
45 |
7 33 44
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → 𝑦 = 1 ) |
48 |
47
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
49 |
46 48
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
50 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑦 ≠ 1 ) ) |
51 |
9
|
simprd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
52 |
|
abscl |
⊢ ( 𝑤 ∈ ℂ → ( abs ‘ 𝑤 ) ∈ ℝ ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
54 |
53
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → ( abs ‘ 𝑤 ) ∈ ℝ ) ) |
55 |
|
absge0 |
⊢ ( 𝑤 ∈ ℂ → 0 ≤ ( abs ‘ 𝑤 ) ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → 0 ≤ ( abs ‘ 𝑤 ) ) |
57 |
56
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → 0 ≤ ( abs ‘ 𝑤 ) ) ) |
58 |
1 2
|
abelthlem1 |
⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
60 |
53
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( abs ‘ 𝑤 ) ∈ ℝ* ) |
61 |
|
1re |
⊢ 1 ∈ ℝ |
62 |
|
rexr |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) |
63 |
61 62
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → 1 ∈ ℝ* ) |
64 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
65 |
|
eqid |
⊢ ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) |
66 |
|
eqid |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
67 |
65 1 66
|
radcnvcl |
⊢ ( 𝜑 → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
68 |
64 67
|
sselid |
⊢ ( 𝜑 → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
70 |
|
xrltletr |
⊢ ( ( ( abs ‘ 𝑤 ) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) → ( ( ( abs ‘ 𝑤 ) < 1 ∧ 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) → ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
71 |
60 63 69 70
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( ( abs ‘ 𝑤 ) < 1 ∧ 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) → ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
72 |
59 71
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
73 |
54 57 72
|
3jcad |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑤 ) ∧ ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
74 |
|
0cn |
⊢ 0 ∈ ℂ |
75 |
17
|
cnmetdval |
⊢ ( ( 0 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 0 ( abs ∘ − ) 𝑤 ) = ( abs ‘ ( 0 − 𝑤 ) ) ) |
76 |
74 75
|
mpan |
⊢ ( 𝑤 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑤 ) = ( abs ‘ ( 0 − 𝑤 ) ) ) |
77 |
|
abssub |
⊢ ( ( 0 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑤 ) ) = ( abs ‘ ( 𝑤 − 0 ) ) ) |
78 |
74 77
|
mpan |
⊢ ( 𝑤 ∈ ℂ → ( abs ‘ ( 0 − 𝑤 ) ) = ( abs ‘ ( 𝑤 − 0 ) ) ) |
79 |
|
subid1 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 − 0 ) = 𝑤 ) |
80 |
79
|
fveq2d |
⊢ ( 𝑤 ∈ ℂ → ( abs ‘ ( 𝑤 − 0 ) ) = ( abs ‘ 𝑤 ) ) |
81 |
76 78 80
|
3eqtrd |
⊢ ( 𝑤 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑤 ) = ( abs ‘ 𝑤 ) ) |
82 |
81
|
breq1d |
⊢ ( 𝑤 ∈ ℂ → ( ( 0 ( abs ∘ − ) 𝑤 ) < 1 ↔ ( abs ‘ 𝑤 ) < 1 ) ) |
83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( 0 ( abs ∘ − ) 𝑤 ) < 1 ↔ ( abs ‘ 𝑤 ) < 1 ) ) |
84 |
|
0re |
⊢ 0 ∈ ℝ |
85 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) → ( ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑤 ) ∧ ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
86 |
84 69 85
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑤 ) ∧ ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
87 |
73 83 86
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( 0 ( abs ∘ − ) 𝑤 ) < 1 → ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
88 |
87
|
imdistanda |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑤 ) < 1 ) → ( 𝑤 ∈ ℂ ∧ ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) |
89 |
|
1xr |
⊢ 1 ∈ ℝ* |
90 |
|
elbl |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 𝑤 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑤 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑤 ) < 1 ) ) ) |
91 |
34 74 89 90
|
mp3an |
⊢ ( 𝑤 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑤 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑤 ) < 1 ) ) |
92 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
93 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
94 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑤 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑤 ∈ ℂ ∧ ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) |
95 |
92 93 94
|
mp2b |
⊢ ( 𝑤 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑤 ∈ ℂ ∧ ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
96 |
88 91 95
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑤 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) |
97 |
96
|
ssrdv |
⊢ ( 𝜑 → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
98 |
51 97
|
sstrd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
99 |
98
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
100 |
6
|
reseq1i |
⊢ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) = ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) |
101 |
|
difss |
⊢ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 |
102 |
|
resmpt |
⊢ ( ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
103 |
101 102
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
104 |
100 103
|
eqtri |
⊢ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
105 |
99 104
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ) |
106 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ dom abs |
107 |
92
|
fdmi |
⊢ dom abs = ℂ |
108 |
106 107
|
sseqtri |
⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ ℂ |
109 |
108
|
sseli |
⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → 𝑥 ∈ ℂ ) |
110 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑗 ) ) |
111 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑗 ) ) |
112 |
110 111
|
oveq12d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
113 |
112
|
cbvsumv |
⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) |
114 |
65
|
pserval2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) = ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
115 |
114
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℂ → Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
116 |
113 115
|
eqtr4id |
⊢ ( 𝑥 ∈ ℂ → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) ) |
117 |
109 116
|
syl |
⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) ) |
118 |
117
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) ) |
119 |
|
eqid |
⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) = ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
120 |
|
eqid |
⊢ if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑣 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑣 ) + 1 ) ) = if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑣 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑣 ) + 1 ) ) |
121 |
65 118 1 66 119 120
|
psercn |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) ) |
122 |
|
rescncf |
⊢ ( ( 𝑆 ∖ { 1 } ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) ) |
123 |
98 121 122
|
sylc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) |
124 |
105 123
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) |
125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) |
126 |
101 15
|
sstri |
⊢ ( 𝑆 ∖ { 1 } ) ⊆ ℂ |
127 |
|
ssid |
⊢ ℂ ⊆ ℂ |
128 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) |
129 |
38
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
130 |
129
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
131 |
38 128 130
|
cncfcn |
⊢ ( ( ( 𝑆 ∖ { 1 } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
132 |
126 127 131
|
mp2an |
⊢ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) |
133 |
125 132
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
134 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) |
135 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑆 ∖ { 1 } ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) ∈ ( TopOn ‘ ( 𝑆 ∖ { 1 } ) ) ) |
136 |
129 126 135
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) ∈ ( TopOn ‘ ( 𝑆 ∖ { 1 } ) ) |
137 |
136
|
toponunii |
⊢ ( 𝑆 ∖ { 1 } ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) |
138 |
137
|
cncnpi |
⊢ ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
139 |
133 134 138
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
140 |
38
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
141 |
|
cnex |
⊢ ℂ ∈ V |
142 |
141 15
|
ssexi |
⊢ 𝑆 ∈ V |
143 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) ) |
144 |
140 101 142 143
|
mp3an |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) |
145 |
144
|
oveq1i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) |
146 |
145
|
fveq1i |
⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) |
147 |
139 146
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
148 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
149 |
140 142 148
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top |
150 |
149
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
151 |
101
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ) |
152 |
10
|
snssd |
⊢ ( 𝜑 → { 1 } ⊆ 𝑆 ) |
153 |
38
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
154 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
155 |
154
|
sncld |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ 1 ∈ ℂ ) → { 1 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
156 |
153 14 155
|
mp2an |
⊢ { 1 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
157 |
154
|
restcldi |
⊢ ( ( 𝑆 ⊆ ℂ ∧ { 1 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ { 1 } ⊆ 𝑆 ) → { 1 } ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
158 |
15 156 157
|
mp3an12 |
⊢ ( { 1 } ⊆ 𝑆 → { 1 } ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
159 |
154
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ⊆ ℂ ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
160 |
140 15 159
|
mp2an |
⊢ 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
161 |
160
|
cldopn |
⊢ ( { 1 } ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
162 |
152 158 161
|
3syl |
⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
163 |
160
|
isopn3 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ) → ( ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) = ( 𝑆 ∖ { 1 } ) ) ) |
164 |
149 101 163
|
mp2an |
⊢ ( ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) = ( 𝑆 ∖ { 1 } ) ) |
165 |
162 164
|
sylib |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) = ( 𝑆 ∖ { 1 } ) ) |
166 |
165
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) ↔ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) ) |
167 |
166
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) ) |
168 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝐹 : 𝑆 ⟶ ℂ ) |
169 |
160 154
|
cnprest |
⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ) ∧ ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) ∧ 𝐹 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
170 |
150 151 167 168 169
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
171 |
147 170
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
172 |
50 171
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑦 ≠ 1 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
173 |
172
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ≠ 1 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
174 |
49 173
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
175 |
174
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
176 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
177 |
129 15 176
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) |
178 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑦 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) |
179 |
177 129 178
|
mp2an |
⊢ ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑦 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
180 |
7 175 179
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
181 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
182 |
38 181 130
|
cncfcn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
183 |
15 127 182
|
mp2an |
⊢ ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) |
184 |
180 183
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |