Step |
Hyp |
Ref |
Expression |
1 |
|
abelth2.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth2.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth2.3 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
4 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
5 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
6 |
4 5
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ ℂ ) |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 𝑧 ∈ ( 0 [,] 1 ) ) |
10 |
|
elicc01 |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1 ) ) |
11 |
9 10
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1 ) ) |
12 |
11
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 𝑧 ∈ ℝ ) |
13 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 1 − 𝑧 ) ∈ ℝ ) |
14 |
8 12 13
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑧 ) ∈ ℝ ) |
15 |
14
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑧 ) ≤ ( 1 − 𝑧 ) ) |
16 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 1 ∈ ℝ ) |
17 |
11
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 𝑧 ≤ 1 ) |
18 |
12 16 17
|
abssubge0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( abs ‘ ( 1 − 𝑧 ) ) = ( 1 − 𝑧 ) ) |
19 |
11
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 0 ≤ 𝑧 ) |
20 |
12 19
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( abs ‘ 𝑧 ) = 𝑧 ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − ( abs ‘ 𝑧 ) ) = ( 1 − 𝑧 ) ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 1 · ( 1 − 𝑧 ) ) ) |
23 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑧 ) ∈ ℂ ) |
24 |
23
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 1 − 𝑧 ) ) = ( 1 − 𝑧 ) ) |
25 |
22 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 1 − 𝑧 ) ) |
26 |
15 18 25
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) |
27 |
7 26
|
ssrabdv |
⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ) |
28 |
27
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
29 |
28 3
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) = 𝐹 ) |
30 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
31 |
|
0le1 |
⊢ 0 ≤ 1 |
32 |
31
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
33 |
|
eqid |
⊢ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
34 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
35 |
1 2 30 32 33 34
|
abelth |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } –cn→ ℂ ) ) |
36 |
|
rescncf |
⊢ ( ( 0 [,] 1 ) ⊆ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } –cn→ ℂ ) → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) ) |
37 |
27 35 36
|
sylc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
38 |
29 37
|
eqeltrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |