Metamath Proof Explorer


Theorem abelthlem1

Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypotheses abelth.1 ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
abelth.2 ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ )
Assertion abelthlem1 ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 abelth.1 ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
2 abelth.2 ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ )
3 abs1 ( abs ‘ 1 ) = 1
4 eqid ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) )
5 eqid sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
6 1cnd ( 𝜑 → 1 ∈ ℂ )
7 1 feqmptd ( 𝜑𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) )
8 1 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ0 ) → ( 𝐴𝑛 ) ∈ ℂ )
9 8 mulid1d ( ( 𝜑𝑛 ∈ ℕ0 ) → ( ( 𝐴𝑛 ) · 1 ) = ( 𝐴𝑛 ) )
10 9 mpteq2dva ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) )
11 7 10 eqtr4d ( 𝜑𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · 1 ) ) )
12 ax-1cn 1 ∈ ℂ
13 oveq1 ( 𝑧 = 1 → ( 𝑧𝑛 ) = ( 1 ↑ 𝑛 ) )
14 nn0z ( 𝑛 ∈ ℕ0𝑛 ∈ ℤ )
15 1exp ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 )
16 14 15 syl ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 )
17 13 16 sylan9eq ( ( 𝑧 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑧𝑛 ) = 1 )
18 17 oveq2d ( ( 𝑧 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) = ( ( 𝐴𝑛 ) · 1 ) )
19 18 mpteq2dva ( 𝑧 = 1 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · 1 ) ) )
20 nn0ex 0 ∈ V
21 20 mptex ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · 1 ) ) ∈ V
22 19 4 21 fvmpt ( 1 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · 1 ) ) )
23 12 22 ax-mp ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · 1 ) )
24 11 23 eqtr4di ( 𝜑𝐴 = ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 1 ) )
25 24 seqeq3d ( 𝜑 → seq 0 ( + , 𝐴 ) = seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 1 ) ) )
26 25 2 eqeltrrd ( 𝜑 → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 1 ) ) ∈ dom ⇝ )
27 4 1 5 6 26 radcnvle ( 𝜑 → ( abs ‘ 1 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) )
28 3 27 eqbrtrrid ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑧𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) )