Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
4 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
5 |
|
eqid |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
6 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
7 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
8 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
9 |
8
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( 𝐴 ‘ 𝑛 ) ) |
10 |
9
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
11 |
7 10
|
eqtr4d |
⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
12 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
13 |
|
oveq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) |
14 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
15 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
16 |
14 15
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
17 |
13 16
|
sylan9eq |
⊢ ( ( 𝑧 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑛 ) = 1 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝑧 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
19 |
18
|
mpteq2dva |
⊢ ( 𝑧 = 1 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
20 |
|
nn0ex |
⊢ ℕ0 ∈ V |
21 |
20
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ∈ V |
22 |
19 4 21
|
fvmpt |
⊢ ( 1 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
23 |
12 22
|
ax-mp |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
24 |
11 23
|
eqtr4di |
⊢ ( 𝜑 → 𝐴 = ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) ) |
25 |
24
|
seqeq3d |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) = seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) ) ) |
26 |
25 2
|
eqeltrrd |
⊢ ( 𝜑 → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) ) ∈ dom ⇝ ) |
27 |
4 1 5 6 26
|
radcnvle |
⊢ ( 𝜑 → ( abs ‘ 1 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
28 |
3 27
|
eqbrtrrid |
⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |