Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
6 |
1 2 3 4 5
|
abelthlem2 |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
8 |
|
ssundif |
⊢ ( 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
9 |
7 8
|
sylibr |
⊢ ( 𝜑 → 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
10 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
11 |
|
elun |
⊢ ( 𝑋 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
12 |
10 11
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
13 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
14 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
15 |
14
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( 𝐴 ‘ 𝑛 ) ) |
16 |
15
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
17 |
13 16
|
eqtr4d |
⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
18 |
|
elsni |
⊢ ( 𝑋 ∈ { 1 } → 𝑋 = 1 ) |
19 |
18
|
oveq1d |
⊢ ( 𝑋 ∈ { 1 } → ( 𝑋 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) |
20 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
21 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
22 |
20 21
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
23 |
19 22
|
sylan9eq |
⊢ ( ( 𝑋 ∈ { 1 } ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) = 1 ) |
24 |
23
|
oveq2d |
⊢ ( ( 𝑋 ∈ { 1 } ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
25 |
24
|
mpteq2dva |
⊢ ( 𝑋 ∈ { 1 } → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
26 |
25
|
eqcomd |
⊢ ( 𝑋 ∈ { 1 } → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
27 |
17 26
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
28 |
27
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , 𝐴 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
30 |
28 29
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
31 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
32 |
|
0cn |
⊢ 0 ∈ ℂ |
33 |
|
1xr |
⊢ 1 ∈ ℝ* |
34 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
35 |
31 32 33 34
|
mp3an |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
37 |
35 36
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝑋 ∈ ℂ ) |
38 |
|
oveq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
40 |
39
|
mpteq2dv |
⊢ ( 𝑧 = 𝑋 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
41 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
42 |
|
nn0ex |
⊢ ℕ0 ∈ V |
43 |
42
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ V |
44 |
40 41 43
|
fvmpt |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
45 |
37 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
46 |
45
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
47 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
48 |
|
eqid |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
49 |
37
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
50 |
49
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ* ) |
51 |
|
1re |
⊢ 1 ∈ ℝ |
52 |
|
rexr |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) |
53 |
51 52
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 1 ∈ ℝ* ) |
54 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
55 |
41 47 48
|
radcnvcl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
56 |
54 55
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
57 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
58 |
57
|
cnmetdval |
⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
59 |
37 32 58
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
60 |
37
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 − 0 ) = 𝑋 ) |
61 |
60
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
62 |
59 61
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑋 ) ) |
63 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
64 |
31 33 63
|
mpanl12 |
⊢ ( ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
65 |
32 37 64
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
66 |
36 65
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) |
67 |
62 66
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) < 1 ) |
68 |
1 2
|
abelthlem1 |
⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
70 |
50 53 56 67 69
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
71 |
41 47 48 37 70
|
radcnvlt2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) ) ∈ dom ⇝ ) |
72 |
46 71
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
73 |
30 72
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
74 |
12 73
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |