| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							⊢ ( 𝜑  →  0  ≤  𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							⊢ 𝑆  =  { 𝑧  ∈  ℂ  ∣  ( abs ‘ ( 1  −  𝑧 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑧 ) ) ) }  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							abelthlem2 | 
							⊢ ( 𝜑  →  ( 1  ∈  𝑆  ∧  ( 𝑆  ∖  { 1 } )  ⊆  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( 𝑆  ∖  { 1 } )  ⊆  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ssundif | 
							⊢ ( 𝑆  ⊆  ( { 1 }  ∪  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ↔  ( 𝑆  ∖  { 1 } )  ⊆  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylibr | 
							⊢ ( 𝜑  →  𝑆  ⊆  ( { 1 }  ∪  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  ( { 1 }  ∪  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑋  ∈  ( { 1 }  ∪  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ↔  ( 𝑋  ∈  { 1 }  ∨  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  ( 𝑋  ∈  { 1 }  ∨  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							feqmptd | 
							⊢ ( 𝜑  →  𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ‘ 𝑛 ) ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 15 | 
							
								14
							 | 
							mulridd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑛 )  ·  1 )  =  ( 𝐴 ‘ 𝑛 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ‘ 𝑛 ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑋  ∈  { 1 }  →  𝑋  =  1 )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq1d | 
							⊢ ( 𝑋  ∈  { 1 }  →  ( 𝑋 ↑ 𝑛 )  =  ( 1 ↑ 𝑛 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ )  | 
						
						
							| 21 | 
							
								
							 | 
							1exp | 
							⊢ ( 𝑛  ∈  ℤ  →  ( 1 ↑ 𝑛 )  =  1 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 1 ↑ 𝑛 )  =  1 )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							sylan9eq | 
							⊢ ( ( 𝑋  ∈  { 1 }  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑛 )  =  1 )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq2d | 
							⊢ ( ( 𝑋  ∈  { 1 }  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  =  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							mpteq2dva | 
							⊢ ( 𝑋  ∈  { 1 }  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							eqcomd | 
							⊢ ( 𝑋  ∈  { 1 }  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							sylan9eq | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  { 1 } )  →  𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							seqeq3d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  { 1 } )  →  seq 0 (  +  ,  𝐴 )  =  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 29 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  { 1 } )  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  { 1 } )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 31 | 
							
								
							 | 
							cnxmet | 
							⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  | 
						
						
							| 32 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 33 | 
							
								
							 | 
							1xr | 
							⊢ 1  ∈  ℝ*  | 
						
						
							| 34 | 
							
								
							 | 
							blssm | 
							⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  0  ∈  ℂ  ∧  1  ∈  ℝ* )  →  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ⊆  ℂ )  | 
						
						
							| 35 | 
							
								31 32 33 34
							 | 
							mp3an | 
							⊢ ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ⊆  ℂ  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							sselid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  𝑋  ∈  ℂ )  | 
						
						
							| 38 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑧  =  𝑋  →  ( 𝑧 ↑ 𝑛 )  =  ( 𝑋 ↑ 𝑛 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq2d | 
							⊢ ( 𝑧  =  𝑋  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  =  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							mpteq2dv | 
							⊢ ( 𝑧  =  𝑋  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 43 | 
							
								42
							 | 
							mptex | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  V  | 
						
						
							| 44 | 
							
								40 41 43
							 | 
							fvmpt | 
							⊢ ( 𝑋  ∈  ℂ  →  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 45 | 
							
								37 44
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							seqeq3d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) )  =  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 47 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 48 | 
							
								
							 | 
							eqid | 
							⊢ sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  | 
						
						
							| 49 | 
							
								37
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( abs ‘ 𝑋 )  ∈  ℝ )  | 
						
						
							| 50 | 
							
								49
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( abs ‘ 𝑋 )  ∈  ℝ* )  | 
						
						
							| 51 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 52 | 
							
								
							 | 
							rexr | 
							⊢ ( 1  ∈  ℝ  →  1  ∈  ℝ* )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							mp1i | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  1  ∈  ℝ* )  | 
						
						
							| 54 | 
							
								
							 | 
							iccssxr | 
							⊢ ( 0 [,] +∞ )  ⊆  ℝ*  | 
						
						
							| 55 | 
							
								41 47 48
							 | 
							radcnvcl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							sselid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 57 | 
							
								
							 | 
							eqid | 
							⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  )  | 
						
						
							| 58 | 
							
								57
							 | 
							cnmetdval | 
							⊢ ( ( 𝑋  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑋  −  0 ) ) )  | 
						
						
							| 59 | 
							
								37 32 58
							 | 
							sylancl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑋  −  0 ) ) )  | 
						
						
							| 60 | 
							
								37
							 | 
							subid1d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( 𝑋  −  0 )  =  𝑋 )  | 
						
						
							| 61 | 
							
								60
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( abs ‘ ( 𝑋  −  0 ) )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							elbl3 | 
							⊢ ( ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  1  ∈  ℝ* )  ∧  ( 0  ∈  ℂ  ∧  𝑋  ∈  ℂ ) )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 64 | 
							
								31 33 63
							 | 
							mpanl12 | 
							⊢ ( ( 0  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 65 | 
							
								32 37 64
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 66 | 
							
								36 65
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 )  | 
						
						
							| 67 | 
							
								62 66
							 | 
							eqbrtrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( abs ‘ 𝑋 )  <  1 )  | 
						
						
							| 68 | 
							
								1 2
							 | 
							abelthlem1 | 
							⊢ ( 𝜑  →  1  ≤  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  1  ≤  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) )  | 
						
						
							| 70 | 
							
								50 53 56 67 69
							 | 
							xrltletrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ( abs ‘ 𝑋 )  <  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) )  | 
						
						
							| 71 | 
							
								41 47 48 37 70
							 | 
							radcnvlt2 | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  seq 0 (  +  ,  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) )  ∈  dom   ⇝  )  | 
						
						
							| 72 | 
							
								46 71
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 73 | 
							
								30 72
							 | 
							jaodan | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  { 1 }  ∨  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 74 | 
							
								12 73
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ∈  dom   ⇝  )  |