Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
8 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℤ ) |
9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑛 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑥 ↑ 𝑚 ) = ( 𝑥 ↑ 𝑛 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
12 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) |
13 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ∈ V |
14 |
11 12 13
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
17 |
16
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
18 |
5
|
ssrab3 |
⊢ 𝑆 ⊆ ℂ |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
20 |
19
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℂ ) |
21 |
|
expcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) ∈ ℂ ) |
22 |
20 21
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) ∈ ℂ ) |
23 |
17 22
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ∈ ℂ ) |
24 |
1 2 3 4 5
|
abelthlem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
25 |
7 8 15 23 24
|
isumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ∈ ℂ ) |
26 |
25 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |