| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							⊢ ( 𝜑  →  0  ≤  𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							⊢ 𝑆  =  { 𝑧  ∈  ℂ  ∣  ( abs ‘ ( 1  −  𝑧 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑧 ) ) ) }  | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 8 | 
							
								
							 | 
							0zd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  0  ∈  ℤ )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝐴 ‘ 𝑚 )  =  ( 𝐴 ‘ 𝑛 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝑥 ↑ 𝑚 )  =  ( 𝑥 ↑ 𝑛 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							oveq12d | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝐴 ‘ 𝑚 )  ·  ( 𝑥 ↑ 𝑚 ) )  =  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑚  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  ( 𝑥 ↑ 𝑚 ) ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  ( 𝑥 ↑ 𝑚 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  ∈  V  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							fvmpt | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  ( 𝑥 ↑ 𝑚 ) ) ) ‘ 𝑛 )  =  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑚  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  ( 𝑥 ↑ 𝑚 ) ) ) ‘ 𝑛 )  =  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 16 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 17 | 
							
								16
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 18 | 
							
								5
							 | 
							ssrab3 | 
							⊢ 𝑆  ⊆  ℂ  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑆  ⊆  ℂ )  | 
						
						
							| 20 | 
							
								19
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  ℂ )  | 
						
						
							| 21 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥 ↑ 𝑛 )  ∈  ℂ )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥 ↑ 𝑛 )  ∈  ℂ )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							mulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 24 | 
							
								1 2 3 4 5
							 | 
							abelthlem3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑚  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑚 )  ·  ( 𝑥 ↑ 𝑚 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 25 | 
							
								7 8 15 23 24
							 | 
							isumcl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 26 | 
							
								25 6
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ ℂ )  |