| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							⊢ ( 𝜑  →  0  ≤  𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							⊢ 𝑆  =  { 𝑧  ∈  ℂ  ∣  ( abs ‘ ( 1  −  𝑧 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑧 ) ) ) }  | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							abelth.7 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ⇝  0 )  | 
						
						
							| 8 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 9 | 
							
								
							 | 
							0zd | 
							⊢ ( 𝜑  →  0  ∈  ℤ )  | 
						
						
							| 10 | 
							
								
							 | 
							1rp | 
							⊢ 1  ∈  ℝ+  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝜑  →  1  ∈  ℝ+ )  | 
						
						
							| 12 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 )  =  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  | 
						
						
							| 13 | 
							
								8 9 11 12 7
							 | 
							climi0 | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  ∃ 𝑗  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 )  | 
						
						
							| 15 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  𝑗  ∈  ℕ0 )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑖  →  ( ( abs ‘ 𝑋 ) ↑ 𝑛 )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ovex | 
							⊢ ( ( abs ‘ 𝑋 ) ↑ 𝑖 )  ∈  V  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							fvmpt | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							cnxmet | 
							⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  | 
						
						
							| 22 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 23 | 
							
								
							 | 
							1xr | 
							⊢ 1  ∈  ℝ*  | 
						
						
							| 24 | 
							
								
							 | 
							blssm | 
							⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  0  ∈  ℂ  ∧  1  ∈  ℝ* )  →  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ⊆  ℂ )  | 
						
						
							| 25 | 
							
								21 22 23 24
							 | 
							mp3an | 
							⊢ ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ⊆  ℂ  | 
						
						
							| 26 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							sselid | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  𝑋  ∈  ℂ )  | 
						
						
							| 28 | 
							
								27
							 | 
							abscld | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( abs ‘ 𝑋 )  ∈  ℝ )  | 
						
						
							| 29 | 
							
								
							 | 
							reexpcl | 
							⊢ ( ( ( abs ‘ 𝑋 )  ∈  ℝ  ∧  𝑖  ∈  ℕ0 )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑖 )  ∈  ℝ )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							sylan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑖 )  ∈  ℝ )  | 
						
						
							| 31 | 
							
								20 30
							 | 
							eqeltrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 )  ∈  ℝ )  | 
						
						
							| 32 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑖  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  =  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  𝑖  →  ( 𝑋 ↑ 𝑘 )  =  ( 𝑋 ↑ 𝑖 ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  𝑖  →  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							ovex | 
							⊢ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) )  ∈  V  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							fvmpt | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) )  | 
						
						
							| 39 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 40 | 
							
								8 9 39
							 | 
							serf | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 41 | 
							
								40
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  seq 0 (  +  ,  𝐴 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 42 | 
							
								41
							 | 
							ffvelcdmda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 43 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 44 | 
							
								27 43
							 | 
							sylan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							mulcld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) )  ∈  ℂ )  | 
						
						
							| 46 | 
							
								38 45
							 | 
							eqeltrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 47 | 
							
								28
							 | 
							recnd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( abs ‘ 𝑋 )  ∈  ℂ )  | 
						
						
							| 48 | 
							
								
							 | 
							absidm | 
							⊢ ( 𝑋  ∈  ℂ  →  ( abs ‘ ( abs ‘ 𝑋 ) )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 49 | 
							
								27 48
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( abs ‘ ( abs ‘ 𝑋 ) )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  )  | 
						
						
							| 51 | 
							
								50
							 | 
							cnmetdval | 
							⊢ ( ( 𝑋  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑋  −  0 ) ) )  | 
						
						
							| 52 | 
							
								27 22 51
							 | 
							sylancl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑋  −  0 ) ) )  | 
						
						
							| 53 | 
							
								27
							 | 
							subid1d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( 𝑋  −  0 )  =  𝑋 )  | 
						
						
							| 54 | 
							
								53
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( abs ‘ ( 𝑋  −  0 ) )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 55 | 
							
								52 54
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							elbl3 | 
							⊢ ( ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  1  ∈  ℝ* )  ∧  ( 0  ∈  ℂ  ∧  𝑋  ∈  ℂ ) )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 57 | 
							
								21 23 56
							 | 
							mpanl12 | 
							⊢ ( ( 0  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 58 | 
							
								22 27 57
							 | 
							sylancr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 59 | 
							
								26 58
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 )  | 
						
						
							| 60 | 
							
								55 59
							 | 
							eqbrtrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( abs ‘ 𝑋 )  <  1 )  | 
						
						
							| 61 | 
							
								49 60
							 | 
							eqbrtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ( abs ‘ ( abs ‘ 𝑋 ) )  <  1 )  | 
						
						
							| 62 | 
							
								47 61 20
							 | 
							geolim | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  ⇝  ( 1  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							climrel | 
							⊢ Rel   ⇝   | 
						
						
							| 64 | 
							
								63
							 | 
							releldmi | 
							⊢ ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  ⇝  ( 1  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 66 | 
							
								
							 | 
							1red | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  1  ∈  ℝ )  | 
						
						
							| 67 | 
							
								41
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  seq 0 (  +  ,  𝐴 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 68 | 
							
								
							 | 
							eluznn0 | 
							⊢ ( ( 𝑗  ∈  ℕ0  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 69 | 
							
								15 68
							 | 
							sylan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 71 | 
							
								69 44
							 | 
							syldan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑋 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							absmuld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) )  =  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ·  ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) ) )  | 
						
						
							| 73 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑋  ∈  ℂ )  | 
						
						
							| 74 | 
							
								73 69
							 | 
							absexpd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( 𝑋 ↑ 𝑖 ) )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ·  ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) )  =  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) )  | 
						
						
							| 76 | 
							
								72 75
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) )  =  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) )  | 
						
						
							| 77 | 
							
								70
							 | 
							abscld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ )  | 
						
						
							| 78 | 
							
								
							 | 
							1red | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  1  ∈  ℝ )  | 
						
						
							| 79 | 
							
								69 30
							 | 
							syldan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑖 )  ∈  ℝ )  | 
						
						
							| 80 | 
							
								71
							 | 
							absge0d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  0  ≤  ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) )  | 
						
						
							| 81 | 
							
								80 74
							 | 
							breqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  0  ≤  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 )  | 
						
						
							| 83 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑚  =  𝑖  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  =  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							breq1d | 
							⊢ ( 𝑚  =  𝑖  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1  ↔  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  <  1 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  <  1 )  | 
						
						
							| 86 | 
							
								82 85
							 | 
							sylan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  <  1 )  | 
						
						
							| 87 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 88 | 
							
								
							 | 
							ltle | 
							⊢ ( ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  <  1  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ≤  1 ) )  | 
						
						
							| 89 | 
							
								77 87 88
							 | 
							sylancl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  <  1  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ≤  1 ) )  | 
						
						
							| 90 | 
							
								86 89
							 | 
							mpd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ≤  1 )  | 
						
						
							| 91 | 
							
								77 78 79 81 90
							 | 
							lemul1ad | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) )  ≤  ( 1  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) )  | 
						
						
							| 92 | 
							
								76 91
							 | 
							eqbrtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) )  ≤  ( 1  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) )  | 
						
						
							| 93 | 
							
								69 37
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ·  ( 𝑋 ↑ 𝑖 ) ) ) )  | 
						
						
							| 95 | 
							
								69 19
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 1  ·  ( ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) )  =  ( 1  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) )  | 
						
						
							| 97 | 
							
								92 94 96
							 | 
							3brtr4d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) )  ≤  ( 1  ·  ( ( 𝑛  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) ) )  | 
						
						
							| 98 | 
							
								8 15 31 46 65 66 97
							 | 
							cvgcmpce | 
							⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  1 ) )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 99 | 
							
								14 98
							 | 
							rexlimddv | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  |