Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
7 |
|
abelth.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
9 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
10 |
|
1rp |
⊢ 1 ∈ ℝ+ |
11 |
10
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
12 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) |
13 |
8 9 11 12 7
|
climi0 |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ∃ 𝑗 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) |
15 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 𝑗 ∈ ℕ0 ) |
16 |
|
oveq2 |
⊢ ( 𝑛 = 𝑖 → ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
17 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) |
18 |
|
ovex |
⊢ ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ V |
19 |
16 17 18
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
21 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
22 |
|
0cn |
⊢ 0 ∈ ℂ |
23 |
|
1xr |
⊢ 1 ∈ ℝ* |
24 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
25 |
21 22 23 24
|
mp3an |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
27 |
25 26
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 𝑋 ∈ ℂ ) |
28 |
27
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
29 |
|
reexpcl |
⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 𝑖 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ ℝ ) |
30 |
28 29
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ ℝ ) |
31 |
20 30
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) ∈ ℝ ) |
32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) |
33 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑖 ) ) |
34 |
32 33
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
35 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
36 |
|
ovex |
⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V |
37 |
34 35 36
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
39 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑥 ) ∈ ℂ ) |
40 |
8 9 39
|
serf |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
42 |
41
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
43 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
44 |
27 43
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
45 |
42 44
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
46 |
38 45
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
47 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
48 |
|
absidm |
⊢ ( 𝑋 ∈ ℂ → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
49 |
27 48
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
50 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
51 |
50
|
cnmetdval |
⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
52 |
27 22 51
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
53 |
27
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 − 0 ) = 𝑋 ) |
54 |
53
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
55 |
52 54
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑋 ) ) |
56 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
57 |
21 23 56
|
mpanl12 |
⊢ ( ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
58 |
22 27 57
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
59 |
26 58
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) |
60 |
55 59
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ 𝑋 ) < 1 ) |
61 |
49 60
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ ( abs ‘ 𝑋 ) ) < 1 ) |
62 |
47 61 20
|
geolim |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
63 |
|
climrel |
⊢ Rel ⇝ |
64 |
63
|
releldmi |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝑋 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
65 |
62 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
66 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 1 ∈ ℝ ) |
67 |
41
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
68 |
|
eluznn0 |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑖 ∈ ℕ0 ) |
69 |
15 68
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑖 ∈ ℕ0 ) |
70 |
67 69
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
71 |
69 44
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
72 |
70 71
|
absmuld |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) ) ) |
73 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℂ ) |
74 |
73 69
|
absexpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
75 |
74
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
76 |
72 75
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
77 |
70
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
78 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 1 ∈ ℝ ) |
79 |
69 30
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ ℝ ) |
80 |
71
|
absge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) ) |
81 |
80 74
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
82 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) |
83 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑖 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) |
84 |
83
|
breq1d |
⊢ ( 𝑚 = 𝑖 → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ↔ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 ) ) |
85 |
84
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 ) |
86 |
82 85
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 ) |
87 |
|
1re |
⊢ 1 ∈ ℝ |
88 |
|
ltle |
⊢ ( ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ≤ 1 ) ) |
89 |
77 87 88
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ≤ 1 ) ) |
90 |
86 89
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ≤ 1 ) |
91 |
77 78 79 81 90
|
lemul1ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ≤ ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
92 |
76 91
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ≤ ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
93 |
69 37
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
94 |
93
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
95 |
69 19
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
96 |
95
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) ) = ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
97 |
92 94 96
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) ) ) |
98 |
8 15 31 46 65 66 97
|
cvgcmpce |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
99 |
14 98
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |