Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
7 |
|
abelth.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
8 |
|
abelthlem6.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) |
9 |
8
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
12 |
11
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑋 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
13 |
|
sumex |
⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
14 |
12 6 13
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
15 |
9 14
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
16 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
17 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
18 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑛 ) ) |
20 |
18 19
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
21 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
22 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
23 |
20 21 22
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
25 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
26 |
5
|
ssrab3 |
⊢ 𝑆 ⊆ ℂ |
27 |
26 9
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
28 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) |
29 |
27 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) |
30 |
25 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
31 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) |
32 |
31 19
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
33 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
34 |
|
ovex |
⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
35 |
32 33 34
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
37 |
16 17 25
|
serf |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
38 |
37
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ∈ ℂ ) |
39 |
38 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
40 |
1 2 3 4 5
|
abelthlem2 |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
41 |
40
|
simprd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
42 |
41 8
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
43 |
1 2 3 4 5 6 7
|
abelthlem5 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
44 |
42 43
|
mpdan |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
45 |
16 17 36 39 44
|
isumclim2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
46 |
|
seqex |
⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V |
47 |
46
|
a1i |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V ) |
48 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
49 |
48
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
50 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 − 1 ) = ( 𝑖 − 1 ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝑖 − 1 ) ) ) |
52 |
51
|
sumeq1d |
⊢ ( 𝑘 = 𝑖 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) |
53 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑖 ) ) |
54 |
52 53
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
55 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
56 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V |
57 |
54 55 56
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
59 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 0 ... ( 𝑖 − 1 ) ) ∈ Fin ) |
60 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
61 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
62 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
63 |
60 61 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
64 |
59 63
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
65 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
66 |
27 65
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
67 |
64 66
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
68 |
58 67
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
69 |
17
|
peano2zd |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℤ ) |
70 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
71 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
72 |
71
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
73 |
70 72
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
74 |
73
|
eleq2i |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
75 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
77 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ) |
78 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) |
79 |
77 78
|
oveq12d |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) |
80 |
79
|
oveq2d |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
81 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
82 |
|
ovex |
⊢ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ∈ V |
83 |
80 81 82
|
fvmpt |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
84 |
76 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
85 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
86 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
88 |
|
nn0ex |
⊢ ℕ0 ∈ V |
89 |
88
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V |
90 |
89
|
shftval |
⊢ ( ( 1 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) ) |
91 |
85 87 90
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) ) |
92 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) |
93 |
76 16
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
94 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
95 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
96 |
94 95 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
97 |
92 93 96
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ) |
98 |
|
expm1t |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
99 |
27 98
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
100 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℂ ) |
101 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( 𝑋 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
102 |
27 75 101
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
103 |
100 102
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
104 |
99 103
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) |
105 |
97 104
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
106 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
108 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) |
109 |
108
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝑛 − 1 ) ) ) |
110 |
109
|
sumeq1d |
⊢ ( 𝑘 = 𝑛 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) |
111 |
110 19
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
112 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
113 |
111 55 112
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
114 |
107 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
115 |
|
ffvelrn |
⊢ ( ( seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
116 |
37 75 115
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
117 |
100 116 102
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
118 |
105 114 117
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
119 |
84 91 118
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) |
120 |
74 119
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) |
121 |
69 120
|
seqfeq |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) = seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
122 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) |
123 |
122 53
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
124 |
|
ovex |
⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V |
125 |
123 33 124
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
126 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
127 |
37
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
128 |
127 66
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
129 |
126 128
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
130 |
123
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
131 |
|
ovex |
⊢ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ∈ V |
132 |
130 81 131
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
134 |
126
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
135 |
133 134
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) ) |
136 |
16 17 27 45 129 135
|
isermulc2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
137 |
|
0z |
⊢ 0 ∈ ℤ |
138 |
|
1z |
⊢ 1 ∈ ℤ |
139 |
89
|
isershft |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ↔ seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
140 |
137 138 139
|
mp2an |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ↔ seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
141 |
136 140
|
sylib |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
142 |
121 141
|
eqbrtrrd |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
143 |
16 49 68 142
|
clim2ser2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
144 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) ) |
145 |
137 144
|
ax-mp |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) |
146 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 − 1 ) = ( 0 − 1 ) ) |
147 |
146
|
oveq2d |
⊢ ( 𝑘 = 0 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 0 − 1 ) ) ) |
148 |
|
risefall0lem |
⊢ ( 0 ... ( 0 − 1 ) ) = ∅ |
149 |
147 148
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 ... ( 𝑘 − 1 ) ) = ∅ ) |
150 |
149
|
sumeq1d |
⊢ ( 𝑘 = 0 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ∅ ( 𝐴 ‘ 𝑚 ) ) |
151 |
|
sum0 |
⊢ Σ 𝑚 ∈ ∅ ( 𝐴 ‘ 𝑚 ) = 0 |
152 |
150 151
|
eqtrdi |
⊢ ( 𝑘 = 0 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = 0 ) |
153 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 0 ) ) |
154 |
152 153
|
oveq12d |
⊢ ( 𝑘 = 0 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( 0 · ( 𝑋 ↑ 0 ) ) ) |
155 |
|
ovex |
⊢ ( 0 · ( 𝑋 ↑ 0 ) ) ∈ V |
156 |
154 55 155
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) ) |
157 |
48 156
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) |
158 |
145 157
|
eqtri |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) |
159 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝑋 ↑ 0 ) ∈ ℂ ) |
160 |
27 48 159
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 ↑ 0 ) ∈ ℂ ) |
161 |
160
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝑋 ↑ 0 ) ) = 0 ) |
162 |
158 161
|
syl5eq |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = 0 ) |
163 |
162
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + 0 ) ) |
164 |
16 17 36 39 44
|
isumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
165 |
27 164
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℂ ) |
166 |
165
|
addid1d |
⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + 0 ) = ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
167 |
163 166
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
168 |
143 167
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
169 |
16 17 129
|
serf |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) |
170 |
169
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
171 |
16 17 68
|
serf |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) |
172 |
171
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
173 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
174 |
173 16
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
175 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝜑 ) |
176 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑖 ) → 𝑛 ∈ ℕ0 ) |
177 |
36 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
178 |
175 176 177
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
179 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
180 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 0 ... ( 𝑛 − 1 ) ) ∈ Fin ) |
181 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
182 |
181 95 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
183 |
180 182
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
184 |
183 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
185 |
179 184
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
186 |
175 176 185
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
187 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) |
188 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
189 |
188 16
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
190 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... 𝑛 ) → 𝑚 ∈ ℕ0 ) |
191 |
181 190 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
192 |
187 189 191
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( 𝐴 ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) |
193 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑛 ) ) |
194 |
189 191 193
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( 𝐴 ‘ 𝑚 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) ) |
195 |
192 194
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) ) |
196 |
195
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) = ( ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) ) |
197 |
183 25
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) = ( 𝐴 ‘ 𝑛 ) ) |
198 |
196 197
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) ) |
199 |
198
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) · ( 𝑋 ↑ 𝑛 ) ) ) |
200 |
38 183 29
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
201 |
199 200
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
202 |
36 179
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
203 |
201 24 202
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) ) |
204 |
175 176 203
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) ) |
205 |
174 178 186 204
|
sersub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) − ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ) ) |
206 |
16 17 45 47 168 170 172 205
|
climsub |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
207 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
208 |
207 27 164
|
subdird |
⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
209 |
164
|
mulid2d |
⊢ ( 𝜑 → ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
210 |
209
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
211 |
208 210
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
212 |
206 211
|
breqtrrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
213 |
16 17 24 30 212
|
isumclim |
⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
214 |
15 213
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |