| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							⊢ ( 𝜑  →  0  ≤  𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							⊢ 𝑆  =  { 𝑧  ∈  ℂ  ∣  ( abs ‘ ( 1  −  𝑧 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑧 ) ) ) }  | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							abelth.7 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ⇝  0 )  | 
						
						
							| 8 | 
							
								
							 | 
							abelthlem6.1 | 
							⊢ ( 𝜑  →  𝑋  ∈  ( 𝑆  ∖  { 1 } ) )  | 
						
						
							| 9 | 
							
								
							 | 
							abelthlem7.2 | 
							⊢ ( 𝜑  →  𝑅  ∈  ℝ+ )  | 
						
						
							| 10 | 
							
								
							 | 
							abelthlem7.3 | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								
							 | 
							abelthlem7.4 | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  𝑅 )  | 
						
						
							| 12 | 
							
								
							 | 
							abelthlem7.5 | 
							⊢ ( 𝜑  →  ( abs ‘ ( 1  −  𝑋 ) )  <  ( 𝑅  /  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6
							 | 
							abelthlem4 | 
							⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ ℂ )  | 
						
						
							| 14 | 
							
								8
							 | 
							eldifad | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑆 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								15
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑋 ) )  ∈  ℝ )  | 
						
						
							| 17 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 8
							 | 
							abelthlem7a | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  ℂ  ∧  ( abs ‘ ( 1  −  𝑋 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑋  ∈  ℂ )  | 
						
						
							| 20 | 
							
								
							 | 
							subcl | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( 1  −  𝑋 )  ∈  ℂ )  | 
						
						
							| 21 | 
							
								17 19 20
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 1  −  𝑋 )  ∈  ℂ )  | 
						
						
							| 22 | 
							
								
							 | 
							fzfid | 
							⊢ ( 𝜑  →  ( 0 ... ( 𝑁  −  1 ) )  ∈  Fin )  | 
						
						
							| 23 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 24 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 25 | 
							
								
							 | 
							0zd | 
							⊢ ( 𝜑  →  0  ∈  ℤ )  | 
						
						
							| 26 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							serf | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 28 | 
							
								27
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 29 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑛 )  ∈  ℂ )  | 
						
						
							| 30 | 
							
								19 29
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑛 )  ∈  ℂ )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							mulcld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 32 | 
							
								23 31
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 33 | 
							
								22 32
							 | 
							fsumcl | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 34 | 
							
								21 33
							 | 
							mulcld | 
							⊢ ( 𝜑  →  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℂ )  | 
						
						
							| 35 | 
							
								34
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ∈  ℝ )  | 
						
						
							| 36 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 )  | 
						
						
							| 37 | 
							
								10
							 | 
							nn0zd | 
							⊢ ( 𝜑  →  𝑁  ∈  ℤ )  | 
						
						
							| 38 | 
							
								
							 | 
							eluznn0 | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 39 | 
							
								10 38
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 40 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑛  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  =  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  𝑛  →  ( 𝑋 ↑ 𝑘 )  =  ( 𝑋 ↑ 𝑛 ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  𝑛  →  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							ovex | 
							⊢ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  ∈  V  | 
						
						
							| 45 | 
							
								42 43 44
							 | 
							fvmpt | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  | 
						
						
							| 46 | 
							
								39 45
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  | 
						
						
							| 47 | 
							
								39 31
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 48 | 
							
								1 2 3 4 5
							 | 
							abelthlem2 | 
							⊢ ( 𝜑  →  ( 1  ∈  𝑆  ∧  ( 𝑆  ∖  { 1 } )  ⊆  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( 𝑆  ∖  { 1 } )  ⊆  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  | 
						
						
							| 50 | 
							
								49 8
							 | 
							sseldd | 
							⊢ ( 𝜑  →  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  | 
						
						
							| 51 | 
							
								1 2 3 4 5 6 7
							 | 
							abelthlem5 | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							mpdan | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 53 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 )  =  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  | 
						
						
							| 54 | 
							
								53 31
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 55 | 
							
								24 10 54
							 | 
							iserex | 
							⊢ ( 𝜑  →  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝   ↔  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  ) )  | 
						
						
							| 56 | 
							
								52 55
							 | 
							mpbid | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 57 | 
							
								36 37 46 47 56
							 | 
							isumcl | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 58 | 
							
								21 57
							 | 
							mulcld | 
							⊢ ( 𝜑  →  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℂ )  | 
						
						
							| 59 | 
							
								58
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ∈  ℝ )  | 
						
						
							| 60 | 
							
								35 59
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  +  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  ∈  ℝ )  | 
						
						
							| 61 | 
							
								
							 | 
							peano2re | 
							⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  +  1 )  ∈  ℝ )  | 
						
						
							| 62 | 
							
								3 61
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℝ )  | 
						
						
							| 63 | 
							
								9
							 | 
							rpred | 
							⊢ ( 𝜑  →  𝑅  ∈  ℝ )  | 
						
						
							| 64 | 
							
								62 63
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  ·  𝑅 )  ∈  ℝ )  | 
						
						
							| 65 | 
							
								1 2 3 4 5 6 7 8
							 | 
							abelthlem6 | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ℕ0 ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 66 | 
							
								24 36 10 53 31 52
							 | 
							isumsplit | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ℕ0 ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  =  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  +  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ℕ0 ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  =  ( ( 1  −  𝑋 )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  +  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 68 | 
							
								21 33 57
							 | 
							adddid | 
							⊢ ( 𝜑  →  ( ( 1  −  𝑋 )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  +  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  =  ( ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  +  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 69 | 
							
								65 67 68
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  ( ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  +  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑋 ) )  =  ( abs ‘ ( ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  +  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) ) )  | 
						
						
							| 71 | 
							
								34 58
							 | 
							abstrid | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  +  ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  ≤  ( ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  +  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑋 ) )  ≤  ( ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  +  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) ) )  | 
						
						
							| 73 | 
							
								3 63
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( 𝑀  ·  𝑅 )  ∈  ℝ )  | 
						
						
							| 74 | 
							
								21
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ ( 1  −  𝑋 ) )  ∈  ℝ )  | 
						
						
							| 75 | 
							
								28
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 76 | 
							
								23 75
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 77 | 
							
								22 76
							 | 
							fsumrecl | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 78 | 
							
								
							 | 
							peano2re | 
							⊢ ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ  →  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 )  ∈  ℝ )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							syl | 
							⊢ ( 𝜑  →  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 )  ∈  ℝ )  | 
						
						
							| 80 | 
							
								74 79
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  ∈  ℝ )  | 
						
						
							| 81 | 
							
								21 33
							 | 
							absmuld | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  =  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( abs ‘ Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 82 | 
							
								33
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℝ )  | 
						
						
							| 83 | 
							
								21
							 | 
							absge0d | 
							⊢ ( 𝜑  →  0  ≤  ( abs ‘ ( 1  −  𝑋 ) ) )  | 
						
						
							| 84 | 
							
								31
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℝ )  | 
						
						
							| 85 | 
							
								23 84
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℝ )  | 
						
						
							| 86 | 
							
								22 85
							 | 
							fsumrecl | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℝ )  | 
						
						
							| 87 | 
							
								22 32
							 | 
							fsumabs | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 88 | 
							
								19
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℝ )  | 
						
						
							| 89 | 
							
								
							 | 
							reexpcl | 
							⊢ ( ( ( abs ‘ 𝑋 )  ∈  ℝ  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑛 )  ∈  ℝ )  | 
						
						
							| 90 | 
							
								88 89
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑛 )  ∈  ℝ )  | 
						
						
							| 91 | 
							
								
							 | 
							1red | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  1  ∈  ℝ )  | 
						
						
							| 92 | 
							
								28
							 | 
							absge0d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  0  ≤  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 93 | 
							
								88
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ 𝑋 )  ∈  ℝ )  | 
						
						
							| 94 | 
							
								19
							 | 
							absge0d | 
							⊢ ( 𝜑  →  0  ≤  ( abs ‘ 𝑋 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  0  ≤  ( abs ‘ 𝑋 ) )  | 
						
						
							| 96 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 97 | 
							
								
							 | 
							eqid | 
							⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  )  | 
						
						
							| 98 | 
							
								97
							 | 
							cnmetdval | 
							⊢ ( ( 𝑋  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑋  −  0 ) ) )  | 
						
						
							| 99 | 
							
								19 96 98
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ ( 𝑋  −  0 ) ) )  | 
						
						
							| 100 | 
							
								19
							 | 
							subid1d | 
							⊢ ( 𝜑  →  ( 𝑋  −  0 )  =  𝑋 )  | 
						
						
							| 101 | 
							
								100
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( abs ‘ ( 𝑋  −  0 ) )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 102 | 
							
								99 101
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑋 ( abs  ∘   −  ) 0 )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 103 | 
							
								
							 | 
							cnxmet | 
							⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  | 
						
						
							| 104 | 
							
								
							 | 
							1xr | 
							⊢ 1  ∈  ℝ*  | 
						
						
							| 105 | 
							
								
							 | 
							elbl3 | 
							⊢ ( ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  1  ∈  ℝ* )  ∧  ( 0  ∈  ℂ  ∧  𝑋  ∈  ℂ ) )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 106 | 
							
								103 104 105
							 | 
							mpanl12 | 
							⊢ ( ( 0  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 107 | 
							
								96 19 106
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 ) )  | 
						
						
							| 108 | 
							
								50 107
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑋 ( abs  ∘   −  ) 0 )  <  1 )  | 
						
						
							| 109 | 
							
								102 108
							 | 
							eqbrtrrd | 
							⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  <  1 )  | 
						
						
							| 110 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 111 | 
							
								
							 | 
							ltle | 
							⊢ ( ( ( abs ‘ 𝑋 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ 𝑋 )  <  1  →  ( abs ‘ 𝑋 )  ≤  1 ) )  | 
						
						
							| 112 | 
							
								88 110 111
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( abs ‘ 𝑋 )  <  1  →  ( abs ‘ 𝑋 )  ≤  1 ) )  | 
						
						
							| 113 | 
							
								109 112
							 | 
							mpd | 
							⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ≤  1 )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ 𝑋 )  ≤  1 )  | 
						
						
							| 115 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 116 | 
							
								
							 | 
							exple1 | 
							⊢ ( ( ( ( abs ‘ 𝑋 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝑋 )  ∧  ( abs ‘ 𝑋 )  ≤  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑛 )  ≤  1 )  | 
						
						
							| 117 | 
							
								93 95 114 115 116
							 | 
							syl31anc | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑛 )  ≤  1 )  | 
						
						
							| 118 | 
							
								90 91 75 92 117
							 | 
							lemul2ad | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  ≤  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  1 ) )  | 
						
						
							| 119 | 
							
								28 30
							 | 
							absmuld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  =  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( abs ‘ ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 120 | 
							
								
							 | 
							absexp | 
							⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( 𝑋 ↑ 𝑛 ) )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  | 
						
						
							| 121 | 
							
								19 120
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( 𝑋 ↑ 𝑛 ) )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( abs ‘ ( 𝑋 ↑ 𝑛 ) ) )  =  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 123 | 
							
								119 122
							 | 
							eqtr2d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 124 | 
							
								75
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 125 | 
							
								124
							 | 
							mulridd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  1 )  =  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 126 | 
							
								118 123 125
							 | 
							3brtr3d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 127 | 
							
								23 126
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 128 | 
							
								22 85 76 127
							 | 
							fsumle | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 129 | 
							
								82 86 77 87 128
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 130 | 
							
								77
							 | 
							ltp1d | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  <  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  | 
						
						
							| 131 | 
							
								82 77 79 129 130
							 | 
							lelttrd | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  <  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  | 
						
						
							| 132 | 
							
								82 79 131
							 | 
							ltled | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  | 
						
						
							| 133 | 
							
								82 79 74 83 132
							 | 
							lemul2ad | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( abs ‘ Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ≤  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) ) )  | 
						
						
							| 134 | 
							
								81 133
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ≤  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) ) )  | 
						
						
							| 135 | 
							
								
							 | 
							0red | 
							⊢ ( 𝜑  →  0  ∈  ℝ )  | 
						
						
							| 136 | 
							
								23 92
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  0  ≤  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 137 | 
							
								22 76 136
							 | 
							fsumge0 | 
							⊢ ( 𝜑  →  0  ≤  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 138 | 
							
								135 77 79 137 130
							 | 
							lelttrd | 
							⊢ ( 𝜑  →  0  <  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  | 
						
						
							| 139 | 
							
								
							 | 
							ltmuldiv | 
							⊢ ( ( ( abs ‘ ( 1  −  𝑋 ) )  ∈  ℝ  ∧  𝑅  ∈  ℝ  ∧  ( ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 )  ∈  ℝ  ∧  0  <  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) ) )  →  ( ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  <  𝑅  ↔  ( abs ‘ ( 1  −  𝑋 ) )  <  ( 𝑅  /  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) ) ) )  | 
						
						
							| 140 | 
							
								74 63 79 138 139
							 | 
							syl112anc | 
							⊢ ( 𝜑  →  ( ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  <  𝑅  ↔  ( abs ‘ ( 1  −  𝑋 ) )  <  ( 𝑅  /  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) ) ) )  | 
						
						
							| 141 | 
							
								12 140
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  <  𝑅 )  | 
						
						
							| 142 | 
							
								35 80 63 134 141
							 | 
							lelttrd | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  <  𝑅 )  | 
						
						
							| 143 | 
							
								21 57
							 | 
							absmuld | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  =  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( abs ‘ Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 144 | 
							
								57
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℝ )  | 
						
						
							| 145 | 
							
								42
							 | 
							fveq2d | 
							⊢ ( 𝑘  =  𝑛  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 146 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  | 
						
						
							| 147 | 
							
								
							 | 
							fvex | 
							⊢ ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  V  | 
						
						
							| 148 | 
							
								145 146 147
							 | 
							fvmpt | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 149 | 
							
								39 148
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 150 | 
							
								47
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℝ )  | 
						
						
							| 151 | 
							
								
							 | 
							uzid | 
							⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 152 | 
							
								37 151
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 153 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  𝑛  →  ( ( abs ‘ 𝑋 ) ↑ 𝑘 )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  | 
						
						
							| 154 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) )  | 
						
						
							| 155 | 
							
								
							 | 
							ovex | 
							⊢ ( ( abs ‘ 𝑋 ) ↑ 𝑛 )  ∈  V  | 
						
						
							| 156 | 
							
								153 154 155
							 | 
							fvmpt | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  | 
						
						
							| 157 | 
							
								39 156
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 )  =  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  | 
						
						
							| 158 | 
							
								39 90
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑛 )  ∈  ℝ )  | 
						
						
							| 159 | 
							
								157 158
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 160 | 
							
								150
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℂ )  | 
						
						
							| 161 | 
							
								149 160
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 162 | 
							
								88
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℂ )  | 
						
						
							| 163 | 
							
								
							 | 
							absidm | 
							⊢ ( 𝑋  ∈  ℂ  →  ( abs ‘ ( abs ‘ 𝑋 ) )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 164 | 
							
								19 163
							 | 
							syl | 
							⊢ ( 𝜑  →  ( abs ‘ ( abs ‘ 𝑋 ) )  =  ( abs ‘ 𝑋 ) )  | 
						
						
							| 165 | 
							
								164 109
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  ( abs ‘ ( abs ‘ 𝑋 ) )  <  1 )  | 
						
						
							| 166 | 
							
								162 165 10 157
							 | 
							geolim2 | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) )  ⇝  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 167 | 
							
								
							 | 
							seqex | 
							⊢ seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) )  ∈  V  | 
						
						
							| 168 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ∈  V  | 
						
						
							| 169 | 
							
								167 168
							 | 
							breldm | 
							⊢ ( seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) )  ⇝  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 170 | 
							
								166 169
							 | 
							syl | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 171 | 
							
								119 122
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  =  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 172 | 
							
								39 171
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  =  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 173 | 
							
								39 75
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 174 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑅  ∈  ℝ )  | 
						
						
							| 175 | 
							
								88
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ 𝑋 )  ∈  ℝ )  | 
						
						
							| 176 | 
							
								94
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  ≤  ( abs ‘ 𝑋 ) )  | 
						
						
							| 177 | 
							
								175 39 176
							 | 
							expge0d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  ≤  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  | 
						
						
							| 178 | 
							
								40
							 | 
							fveq2d | 
							⊢ ( 𝑘  =  𝑛  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  =  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 179 | 
							
								178
							 | 
							breq1d | 
							⊢ ( 𝑘  =  𝑛  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  𝑅  ↔  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  <  𝑅 ) )  | 
						
						
							| 180 | 
							
								179
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  𝑅  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  <  𝑅 )  | 
						
						
							| 181 | 
							
								11 180
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  <  𝑅 )  | 
						
						
							| 182 | 
							
								173 174 181
							 | 
							ltled | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ≤  𝑅 )  | 
						
						
							| 183 | 
							
								173 174 158 177 182
							 | 
							lemul1ad | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  ≤  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 184 | 
							
								172 183
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 185 | 
							
								149
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) )  =  ( abs ‘ ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  | 
						
						
							| 186 | 
							
								
							 | 
							absidm | 
							⊢ ( ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) )  ∈  ℂ  →  ( abs ‘ ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 187 | 
							
								47 186
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 188 | 
							
								185 187
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 189 | 
							
								157
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑅  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) )  =  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 190 | 
							
								184 188 189
							 | 
							3brtr4d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) )  ≤  ( 𝑅  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) ) )  | 
						
						
							| 191 | 
							
								36 152 159 161 170 63 190
							 | 
							cvgcmpce | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 192 | 
							
								36 37 149 150 191
							 | 
							isumrecl | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ∈  ℝ )  | 
						
						
							| 193 | 
							
								
							 | 
							eldifsni | 
							⊢ ( 𝑋  ∈  ( 𝑆  ∖  { 1 } )  →  𝑋  ≠  1 )  | 
						
						
							| 194 | 
							
								8 193
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑋  ≠  1 )  | 
						
						
							| 195 | 
							
								194
							 | 
							necomd | 
							⊢ ( 𝜑  →  1  ≠  𝑋 )  | 
						
						
							| 196 | 
							
								
							 | 
							subeq0 | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( ( 1  −  𝑋 )  =  0  ↔  1  =  𝑋 ) )  | 
						
						
							| 197 | 
							
								196
							 | 
							necon3bid | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( ( 1  −  𝑋 )  ≠  0  ↔  1  ≠  𝑋 ) )  | 
						
						
							| 198 | 
							
								17 19 197
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( 1  −  𝑋 )  ≠  0  ↔  1  ≠  𝑋 ) )  | 
						
						
							| 199 | 
							
								195 198
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 1  −  𝑋 )  ≠  0 )  | 
						
						
							| 200 | 
							
								21 199
							 | 
							absrpcld | 
							⊢ ( 𝜑  →  ( abs ‘ ( 1  −  𝑋 ) )  ∈  ℝ+ )  | 
						
						
							| 201 | 
							
								73 200
							 | 
							rerpdivcld | 
							⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) )  ∈  ℝ )  | 
						
						
							| 202 | 
							
								36 37 46 47 56
							 | 
							isumclim2 | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  ⇝  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  | 
						
						
							| 203 | 
							
								36 37 149 160 191
							 | 
							isumclim2 | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) )  ⇝  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 204 | 
							
								39 54
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 205 | 
							
								46
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) )  =  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 206 | 
							
								149 205
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 )  =  ( abs ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) )  | 
						
						
							| 207 | 
							
								36 202 203 37 204 206
							 | 
							iserabs | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  | 
						
						
							| 208 | 
							
								88 10
							 | 
							reexpcld | 
							⊢ ( 𝜑  →  ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  ∈  ℝ )  | 
						
						
							| 209 | 
							
								
							 | 
							difrp | 
							⊢ ( ( ( abs ‘ 𝑋 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ 𝑋 )  <  1  ↔  ( 1  −  ( abs ‘ 𝑋 ) )  ∈  ℝ+ ) )  | 
						
						
							| 210 | 
							
								88 110 209
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( abs ‘ 𝑋 )  <  1  ↔  ( 1  −  ( abs ‘ 𝑋 ) )  ∈  ℝ+ ) )  | 
						
						
							| 211 | 
							
								109 210
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 1  −  ( abs ‘ 𝑋 ) )  ∈  ℝ+ )  | 
						
						
							| 212 | 
							
								208 211
							 | 
							rerpdivcld | 
							⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ∈  ℝ )  | 
						
						
							| 213 | 
							
								63 212
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  ∈  ℝ )  | 
						
						
							| 214 | 
							
								153
							 | 
							oveq2d | 
							⊢ ( 𝑘  =  𝑛  →  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) )  =  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 215 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) )  | 
						
						
							| 216 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  ∈  V  | 
						
						
							| 217 | 
							
								214 215 216
							 | 
							fvmpt | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ‘ 𝑛 )  =  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 218 | 
							
								39 217
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ‘ 𝑛 )  =  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 219 | 
							
								174 158
							 | 
							remulcld | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 220 | 
							
								9
							 | 
							rpcnd | 
							⊢ ( 𝜑  →  𝑅  ∈  ℂ )  | 
						
						
							| 221 | 
							
								159
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 222 | 
							
								218 189
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ‘ 𝑛 )  =  ( 𝑅  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) ) )  | 
						
						
							| 223 | 
							
								36 37 220 166 221 222
							 | 
							isermulc2 | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) )  ⇝  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 224 | 
							
								
							 | 
							seqex | 
							⊢ seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) )  ∈  V  | 
						
						
							| 225 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  ∈  V  | 
						
						
							| 226 | 
							
								224 225
							 | 
							breldm | 
							⊢ ( seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) )  ⇝  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 227 | 
							
								223 226
							 | 
							syl | 
							⊢ ( 𝜑  →  seq 𝑁 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 228 | 
							
								36 37 149 150 218 219 184 191 227
							 | 
							isumle | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) )  | 
						
						
							| 229 | 
							
								219
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  ∈  ℂ )  | 
						
						
							| 230 | 
							
								36 37 218 229 223
							 | 
							isumclim | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( 𝑅  ·  ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) )  =  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 231 | 
							
								228 230
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 232 | 
							
								9 211
							 | 
							rpdivcld | 
							⊢ ( 𝜑  →  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ∈  ℝ+ )  | 
						
						
							| 233 | 
							
								232
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ∈  ℝ )  | 
						
						
							| 234 | 
							
								208
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  ∈  ℂ )  | 
						
						
							| 235 | 
							
								211
							 | 
							rpcnd | 
							⊢ ( 𝜑  →  ( 1  −  ( abs ‘ 𝑋 ) )  ∈  ℂ )  | 
						
						
							| 236 | 
							
								211
							 | 
							rpne0d | 
							⊢ ( 𝜑  →  ( 1  −  ( abs ‘ 𝑋 ) )  ≠  0 )  | 
						
						
							| 237 | 
							
								220 234 235 236
							 | 
							div12d | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  =  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  ·  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 238 | 
							
								
							 | 
							1red | 
							⊢ ( 𝜑  →  1  ∈  ℝ )  | 
						
						
							| 239 | 
							
								232
							 | 
							rpge0d | 
							⊢ ( 𝜑  →  0  ≤  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 240 | 
							
								
							 | 
							exple1 | 
							⊢ ( ( ( ( abs ‘ 𝑋 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝑋 )  ∧  ( abs ‘ 𝑋 )  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  ≤  1 )  | 
						
						
							| 241 | 
							
								88 94 113 10 240
							 | 
							syl31anc | 
							⊢ ( 𝜑  →  ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  ≤  1 )  | 
						
						
							| 242 | 
							
								208 238 233 239 241
							 | 
							lemul1ad | 
							⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  ·  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  ≤  ( 1  ·  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 243 | 
							
								232
							 | 
							rpcnd | 
							⊢ ( 𝜑  →  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ∈  ℂ )  | 
						
						
							| 244 | 
							
								243
							 | 
							mullidd | 
							⊢ ( 𝜑  →  ( 1  ·  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  =  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 245 | 
							
								242 244
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  ·  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  ≤  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 246 | 
							
								237 245
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  ≤  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 247 | 
							
								18
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( abs ‘ ( 1  −  𝑋 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 248 | 
							
								
							 | 
							resubcl | 
							⊢ ( ( 1  ∈  ℝ  ∧  ( abs ‘ 𝑋 )  ∈  ℝ )  →  ( 1  −  ( abs ‘ 𝑋 ) )  ∈  ℝ )  | 
						
						
							| 249 | 
							
								110 88 248
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 1  −  ( abs ‘ 𝑋 ) )  ∈  ℝ )  | 
						
						
							| 250 | 
							
								3 249
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) )  ∈  ℝ )  | 
						
						
							| 251 | 
							
								74 250 9
							 | 
							lemul2d | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( 1  −  𝑋 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) )  ↔  ( 𝑅  ·  ( abs ‘ ( 1  −  𝑋 ) ) )  ≤  ( 𝑅  ·  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) ) )  | 
						
						
							| 252 | 
							
								247 251
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( abs ‘ ( 1  −  𝑋 ) ) )  ≤  ( 𝑅  ·  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 253 | 
							
								3
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝑀  ∈  ℂ )  | 
						
						
							| 254 | 
							
								220 253 235
							 | 
							mul12d | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  =  ( 𝑀  ·  ( 𝑅  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 255 | 
							
								220 235
							 | 
							mulcomd | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( 1  −  ( abs ‘ 𝑋 ) ) )  =  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  𝑅 ) )  | 
						
						
							| 256 | 
							
								255
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝑀  ·  ( 𝑅  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  =  ( 𝑀  ·  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  𝑅 ) ) )  | 
						
						
							| 257 | 
							
								253 235 220
							 | 
							mul12d | 
							⊢ ( 𝜑  →  ( 𝑀  ·  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  𝑅 ) )  =  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) ) )  | 
						
						
							| 258 | 
							
								254 256 257
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  =  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) ) )  | 
						
						
							| 259 | 
							
								252 258
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( abs ‘ ( 1  −  𝑋 ) ) )  ≤  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) ) )  | 
						
						
							| 260 | 
							
								249 73
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) )  ∈  ℝ )  | 
						
						
							| 261 | 
							
								63 260 200
							 | 
							lemuldivd | 
							⊢ ( 𝜑  →  ( ( 𝑅  ·  ( abs ‘ ( 1  −  𝑋 ) ) )  ≤  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) )  ↔  𝑅  ≤  ( ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) ) )  | 
						
						
							| 262 | 
							
								259 261
							 | 
							mpbid | 
							⊢ ( 𝜑  →  𝑅  ≤  ( ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) )  | 
						
						
							| 263 | 
							
								73
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( 𝑀  ·  𝑅 )  ∈  ℂ )  | 
						
						
							| 264 | 
							
								74
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( abs ‘ ( 1  −  𝑋 ) )  ∈  ℂ )  | 
						
						
							| 265 | 
							
								200
							 | 
							rpne0d | 
							⊢ ( 𝜑  →  ( abs ‘ ( 1  −  𝑋 ) )  ≠  0 )  | 
						
						
							| 266 | 
							
								235 263 264 265
							 | 
							divassd | 
							⊢ ( 𝜑  →  ( ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( 𝑀  ·  𝑅 ) )  /  ( abs ‘ ( 1  −  𝑋 ) ) )  =  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) ) )  | 
						
						
							| 267 | 
							
								262 266
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  𝑅  ≤  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) ) )  | 
						
						
							| 268 | 
							
								
							 | 
							posdif | 
							⊢ ( ( ( abs ‘ 𝑋 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ 𝑋 )  <  1  ↔  0  <  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 269 | 
							
								88 110 268
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( abs ‘ 𝑋 )  <  1  ↔  0  <  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  | 
						
						
							| 270 | 
							
								109 269
							 | 
							mpbid | 
							⊢ ( 𝜑  →  0  <  ( 1  −  ( abs ‘ 𝑋 ) ) )  | 
						
						
							| 271 | 
							
								
							 | 
							ledivmul | 
							⊢ ( ( 𝑅  ∈  ℝ  ∧  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) )  ∈  ℝ  ∧  ( ( 1  −  ( abs ‘ 𝑋 ) )  ∈  ℝ  ∧  0  <  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  →  ( ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ≤  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) )  ↔  𝑅  ≤  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) ) ) )  | 
						
						
							| 272 | 
							
								63 201 249 270 271
							 | 
							syl112anc | 
							⊢ ( 𝜑  →  ( ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ≤  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) )  ↔  𝑅  ≤  ( ( 1  −  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) ) ) )  | 
						
						
							| 273 | 
							
								267 272
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝑅  /  ( 1  −  ( abs ‘ 𝑋 ) ) )  ≤  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) )  | 
						
						
							| 274 | 
							
								213 233 201 246 273
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( 𝑅  ·  ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 )  /  ( 1  −  ( abs ‘ 𝑋 ) ) ) )  ≤  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) )  | 
						
						
							| 275 | 
							
								192 213 201 231 274
							 | 
							letrd | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) )  | 
						
						
							| 276 | 
							
								144 192 201 207 275
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) )  | 
						
						
							| 277 | 
							
								144 73 200
							 | 
							lemuldiv2d | 
							⊢ ( 𝜑  →  ( ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( abs ‘ Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ≤  ( 𝑀  ·  𝑅 )  ↔  ( abs ‘ Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) )  ≤  ( ( 𝑀  ·  𝑅 )  /  ( abs ‘ ( 1  −  𝑋 ) ) ) ) )  | 
						
						
							| 278 | 
							
								276 277
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( 1  −  𝑋 ) )  ·  ( abs ‘ Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ≤  ( 𝑀  ·  𝑅 ) )  | 
						
						
							| 279 | 
							
								143 278
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  ≤  ( 𝑀  ·  𝑅 ) )  | 
						
						
							| 280 | 
							
								35 59 63 73 142 279
							 | 
							ltleaddd | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  +  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  <  ( 𝑅  +  ( 𝑀  ·  𝑅 ) ) )  | 
						
						
							| 281 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝜑  →  1  ∈  ℂ )  | 
						
						
							| 282 | 
							
								253 281 220
							 | 
							adddird | 
							⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  ·  𝑅 )  =  ( ( 𝑀  ·  𝑅 )  +  ( 1  ·  𝑅 ) ) )  | 
						
						
							| 283 | 
							
								220
							 | 
							mullidd | 
							⊢ ( 𝜑  →  ( 1  ·  𝑅 )  =  𝑅 )  | 
						
						
							| 284 | 
							
								283
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑅 )  +  ( 1  ·  𝑅 ) )  =  ( ( 𝑀  ·  𝑅 )  +  𝑅 ) )  | 
						
						
							| 285 | 
							
								263 220
							 | 
							addcomd | 
							⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑅 )  +  𝑅 )  =  ( 𝑅  +  ( 𝑀  ·  𝑅 ) ) )  | 
						
						
							| 286 | 
							
								282 284 285
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  ·  𝑅 )  =  ( 𝑅  +  ( 𝑀  ·  𝑅 ) ) )  | 
						
						
							| 287 | 
							
								280 286
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  ( ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) )  +  ( abs ‘ ( ( 1  −  𝑋 )  ·  Σ 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 )  ·  ( 𝑋 ↑ 𝑛 ) ) ) ) )  <  ( ( 𝑀  +  1 )  ·  𝑅 ) )  | 
						
						
							| 288 | 
							
								16 60 64 72 287
							 | 
							lelttrd | 
							⊢ ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑋 ) )  <  ( ( 𝑀  +  1 )  ·  𝑅 ) )  |