Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
7 |
|
abelth.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
8 |
|
abelthlem6.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) |
9 |
8
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑋 → ( 1 − 𝑧 ) = ( 1 − 𝑋 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑧 = 𝑋 → ( abs ‘ ( 1 − 𝑧 ) ) = ( abs ‘ ( 1 − 𝑋 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( abs ‘ 𝑧 ) = ( abs ‘ 𝑋 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑧 = 𝑋 → ( 1 − ( abs ‘ 𝑧 ) ) = ( 1 − ( abs ‘ 𝑋 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑧 = 𝑋 → ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
15 |
11 14
|
breq12d |
⊢ ( 𝑧 = 𝑋 → ( ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ↔ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
16 |
15 5
|
elrab2 |
⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
17 |
9 16
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |