| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							⊢ ( 𝜑  →  0  ≤  𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							⊢ 𝑆  =  { 𝑧  ∈  ℂ  ∣  ( abs ‘ ( 1  −  𝑧 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑧 ) ) ) }  | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							abelth.7 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ⇝  0 )  | 
						
						
							| 8 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 9 | 
							
								
							 | 
							0zd | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  0  ∈  ℤ )  | 
						
						
							| 10 | 
							
								
							 | 
							id | 
							⊢ ( 𝑅  ∈  ℝ+  →  𝑅  ∈  ℝ+ )  | 
						
						
							| 11 | 
							
								3 4
							 | 
							ge0p1rpd | 
							⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℝ+ )  | 
						
						
							| 12 | 
							
								
							 | 
							rpdivcl | 
							⊢ ( ( 𝑅  ∈  ℝ+  ∧  ( 𝑀  +  1 )  ∈  ℝ+ )  →  ( 𝑅  /  ( 𝑀  +  1 ) )  ∈  ℝ+ )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2anr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑅  /  ( 𝑀  +  1 ) )  ∈  ℝ+ )  | 
						
						
							| 14 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  𝑘  ∈  ℕ0 )  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 )  =  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  | 
						
						
							| 15 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  seq 0 (  +  ,  𝐴 )  ⇝  0 )  | 
						
						
							| 16 | 
							
								8 9 13 14 15
							 | 
							climi0 | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) )  | 
						
						
							| 17 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  →  ( 𝑅  /  ( 𝑀  +  1 ) )  ∈  ℝ+ )  | 
						
						
							| 18 | 
							
								
							 | 
							fzfid | 
							⊢ ( 𝜑  →  ( 0 ... ( 𝑗  −  1 ) )  ∈  Fin )  | 
						
						
							| 19 | 
							
								
							 | 
							0zd | 
							⊢ ( 𝜑  →  0  ∈  ℤ )  | 
						
						
							| 20 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑤 )  ∈  ℂ )  | 
						
						
							| 21 | 
							
								8 19 20
							 | 
							serf | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 22 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 23 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( seq 0 (  +  ,  𝐴 ) : ℕ0 ⟶ ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 24 | 
							
								21 22 23
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) )  →  ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 25 | 
							
								24
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) )  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							fsumrecl | 
							⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ )  | 
						
						
							| 27 | 
							
								26
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  →  Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ )  | 
						
						
							| 28 | 
							
								24
							 | 
							absge0d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) )  →  0  ≤  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) ) )  | 
						
						
							| 29 | 
							
								18 25 28
							 | 
							fsumge0 | 
							⊢ ( 𝜑  →  0  ≤  Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  →  0  ≤  Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) ) )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							ge0p1rpd | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  →  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 )  ∈  ℝ+ )  | 
						
						
							| 32 | 
							
								17 31
							 | 
							rpdivcld | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  →  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) )  ∈  ℝ+ )  | 
						
						
							| 33 | 
							
								1 2 3 4 5
							 | 
							abelthlem2 | 
							⊢ ( 𝜑  →  ( 1  ∈  𝑆  ∧  ( 𝑆  ∖  { 1 } )  ⊆  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							simpld | 
							⊢ ( 𝜑  →  1  ∈  𝑆 )  | 
						
						
							| 35 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 𝑛 )  =  ( 1 ↑ 𝑛 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ )  | 
						
						
							| 37 | 
							
								
							 | 
							1exp | 
							⊢ ( 𝑛  ∈  ℤ  →  ( 1 ↑ 𝑛 )  =  1 )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 1 ↑ 𝑛 )  =  1 )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							sylan9eq | 
							⊢ ( ( 𝑥  =  1  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥 ↑ 𝑛 )  =  1 )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq2d | 
							⊢ ( ( 𝑥  =  1  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							sumeq2dv | 
							⊢ ( 𝑥  =  1  →  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							sumex | 
							⊢ Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  1 )  ∈  V  | 
						
						
							| 43 | 
							
								41 6 42
							 | 
							fvmpt | 
							⊢ ( 1  ∈  𝑆  →  ( 𝐹 ‘ 1 )  =  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 44 | 
							
								34 43
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 45 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℂ )  | 
						
						
							| 46 | 
							
								45
							 | 
							mulridd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑛 )  ·  1 )  =  ( 𝐴 ‘ 𝑛 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  =  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 48 | 
							
								46 45
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑛 )  ·  1 )  ∈  ℂ )  | 
						
						
							| 49 | 
							
								8 19 47 48 7
							 | 
							isumclim | 
							⊢ ( 𝜑  →  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  1 )  =  0 )  | 
						
						
							| 50 | 
							
								44 49
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  0 )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐹 ‘ 1 )  =  0 )  | 
						
						
							| 52 | 
							
								51
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) )  =  ( 0  −  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							df-neg | 
							⊢ - ( 𝐹 ‘ 𝑦 )  =  ( 0  −  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							eqtr4di | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) )  =  - ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ - ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 56 | 
							
								1 2 3 4 5 6
							 | 
							abelthlem4 | 
							⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ ℂ )  | 
						
						
							| 57 | 
							
								56
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ )  | 
						
						
							| 58 | 
							
								57
							 | 
							absnegd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ - ( 𝐹 ‘ 𝑦 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 59 | 
							
								55 58
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad2ant2r | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 62 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  1  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 1 ) )  | 
						
						
							| 63 | 
							
								62 50
							 | 
							sylan9eqr | 
							⊢ ( ( 𝜑  ∧  𝑦  =  1 )  →  ( 𝐹 ‘ 𝑦 )  =  0 )  | 
						
						
							| 64 | 
							
								63
							 | 
							abs00bd | 
							⊢ ( ( 𝜑  ∧  𝑦  =  1 )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  =  0 )  | 
						
						
							| 65 | 
							
								64
							 | 
							ad5ant15 | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  ∧  𝑦  =  1 )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  =  0 )  | 
						
						
							| 66 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  →  𝑅  ∈  ℝ+ )  | 
						
						
							| 67 | 
							
								66
							 | 
							rpgt0d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  →  0  <  𝑅 )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  ∧  𝑦  =  1 )  →  0  <  𝑅 )  | 
						
						
							| 69 | 
							
								65 68
							 | 
							eqbrtrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  ∧  𝑦  =  1 )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  <  𝑅 )  | 
						
						
							| 70 | 
							
								1
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 71 | 
							
								2
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 72 | 
							
								3
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  𝑀  ∈  ℝ )  | 
						
						
							| 73 | 
							
								4
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  0  ≤  𝑀 )  | 
						
						
							| 74 | 
							
								7
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  seq 0 (  +  ,  𝐴 )  ⇝  0 )  | 
						
						
							| 75 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  𝑦  ∈  𝑆 )  | 
						
						
							| 76 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  𝑦  ≠  1 )  | 
						
						
							| 77 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝑦  ∈  ( 𝑆  ∖  { 1 } )  ↔  ( 𝑦  ∈  𝑆  ∧  𝑦  ≠  1 ) )  | 
						
						
							| 78 | 
							
								75 76 77
							 | 
							sylanbrc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  𝑦  ∈  ( 𝑆  ∖  { 1 } ) )  | 
						
						
							| 79 | 
							
								13
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ( 𝑅  /  ( 𝑀  +  1 ) )  ∈  ℝ+ )  | 
						
						
							| 80 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  𝑗  ∈  ℕ0 )  | 
						
						
							| 81 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) )  | 
						
						
							| 82 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑘  =  𝑚  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  =  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							breq1d | 
							⊢ ( 𝑘  =  𝑚  →  ( ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) )  ↔  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) )  | 
						
						
							| 85 | 
							
								81 84
							 | 
							sylib | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑚 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑖  =  𝑛  →  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  =  ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							cbvsumv | 
							⊢ Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  =  Σ 𝑛  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq1i | 
							⊢ ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 )  =  ( Σ 𝑛  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 )  | 
						
						
							| 90 | 
							
								89
							 | 
							oveq2i | 
							⊢ ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) )  =  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑛  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) )  | 
						
						
							| 91 | 
							
								86 90
							 | 
							breqtrdi | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑛  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑛 ) )  +  1 ) ) )  | 
						
						
							| 92 | 
							
								70 71 72 73 5 6 74 78 79 80 85 91
							 | 
							abelthlem7 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  <  ( ( 𝑀  +  1 )  ·  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							rpcn | 
							⊢ ( 𝑅  ∈  ℝ+  →  𝑅  ∈  ℂ )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  𝑅  ∈  ℂ )  | 
						
						
							| 95 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑀  +  1 )  ∈  ℝ+ )  | 
						
						
							| 96 | 
							
								95
							 | 
							rpcnd | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑀  +  1 )  ∈  ℂ )  | 
						
						
							| 97 | 
							
								95
							 | 
							rpne0d | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑀  +  1 )  ≠  0 )  | 
						
						
							| 98 | 
							
								94 96 97
							 | 
							divcan2d | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ( ( 𝑀  +  1 )  ·  ( 𝑅  /  ( 𝑀  +  1 ) ) )  =  𝑅 )  | 
						
						
							| 99 | 
							
								98
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ( ( 𝑀  +  1 )  ·  ( 𝑅  /  ( 𝑀  +  1 ) ) )  =  𝑅 )  | 
						
						
							| 100 | 
							
								92 99
							 | 
							breqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) )  ∧  𝑦  ≠  1 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  <  𝑅 )  | 
						
						
							| 101 | 
							
								100
							 | 
							anassrs | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  ∧  𝑦  ≠  1 )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  <  𝑅 )  | 
						
						
							| 102 | 
							
								69 101
							 | 
							pm2.61dane | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  <  𝑅 )  | 
						
						
							| 103 | 
							
								61 102
							 | 
							eqbrtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑦  ∈  𝑆  ∧  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 )  | 
						
						
							| 104 | 
							
								103
							 | 
							expr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  →  ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  | 
						
						
							| 106 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑤  =  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) )  →  ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  ↔  ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							rspceaimv | 
							⊢ ( ( ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) )  ∈  ℝ+  ∧  ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  ( ( 𝑅  /  ( 𝑀  +  1 ) )  /  ( Σ 𝑖  ∈  ( 0 ... ( 𝑗  −  1 ) ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑖 ) )  +  1 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  →  ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  | 
						
						
							| 108 | 
							
								32 105 107
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 (  +  ,  𝐴 ) ‘ 𝑘 ) )  <  ( 𝑅  /  ( 𝑀  +  1 ) ) ) )  →  ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  | 
						
						
							| 109 | 
							
								16 108
							 | 
							rexlimddv | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  |