| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ∈  dom   ⇝  )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							⊢ ( 𝜑  →  0  ≤  𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							⊢ 𝑆  =  { 𝑧  ∈  ℂ  ∣  ( abs ‘ ( 1  −  𝑧 ) )  ≤  ( 𝑀  ·  ( 1  −  ( abs ‘ 𝑧 ) ) ) }  | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝑘  ∈  ℕ0  →  0  ∈  ℕ0 )  | 
						
						
							| 9 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  0  ∈  ℕ0 )  →  ( 𝐴 ‘ 0 )  ∈  ℂ )  | 
						
						
							| 10 | 
							
								1 8 9
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 0 )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 12 | 
							
								
							 | 
							0zd | 
							⊢ ( 𝜑  →  0  ∈  ℤ )  | 
						
						
							| 13 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑚 )  =  ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑚 )  ∈  ℂ )  | 
						
						
							| 15 | 
							
								11 12 13 14 2
							 | 
							isumcl | 
							⊢ ( 𝜑  →  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  ∈  ℂ )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							subcld | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ∈  ℂ )  | 
						
						
							| 18 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							ifcld | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ∈  ℂ )  | 
						
						
							| 20 | 
							
								19
							 | 
							fmpttd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 21 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝜑  →  0  ∈  ℕ0 )  | 
						
						
							| 22 | 
							
								20
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 23 | 
							
								
							 | 
							1e0p1 | 
							⊢ 1  =  ( 0  +  1 )  | 
						
						
							| 24 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 25 | 
							
								23 24
							 | 
							eqeltrri | 
							⊢ ( 0  +  1 )  ∈  ℤ  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 0  +  1 )  ∈  ℤ )  | 
						
						
							| 27 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 28 | 
							
								23
							 | 
							fveq2i | 
							⊢ ( ℤ≥ ‘ 1 )  =  ( ℤ≥ ‘ ( 0  +  1 ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							eqtri | 
							⊢ ℕ  =  ( ℤ≥ ‘ ( 0  +  1 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eleq2i | 
							⊢ ( 𝑖  ∈  ℕ  ↔  𝑖  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑖  ∈  ℕ  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℕ0 )  | 
						
						
							| 33 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑘  =  𝑖  →  ( 𝑘  =  0  ↔  𝑖  =  0 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑖  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							ifbieq2d | 
							⊢ ( 𝑘  =  𝑖  →  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  =  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ∈  V  | 
						
						
							| 38 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝐴 ‘ 𝑖 )  ∈  V  | 
						
						
							| 39 | 
							
								37 38
							 | 
							ifex | 
							⊢ if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ∈  V  | 
						
						
							| 40 | 
							
								35 36 39
							 | 
							fvmpt | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  =  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  =  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝑖  ∈  ℕ  →  𝑖  ≠  0 )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ≠  0 )  | 
						
						
							| 44 | 
							
								43
							 | 
							neneqd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ¬  𝑖  =  0 )  | 
						
						
							| 45 | 
							
								44
							 | 
							iffalsed | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 46 | 
							
								41 45
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 47 | 
							
								30 46
							 | 
							sylan2br | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 48 | 
							
								26 47
							 | 
							seqfeq | 
							⊢ ( 𝜑  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  =  seq ( 0  +  1 ) (  +  ,  𝐴 ) )  | 
						
						
							| 49 | 
							
								11 12 13 14 2
							 | 
							isumclim2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  𝐴 )  ⇝  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 50 | 
							
								11 21 18 49
							 | 
							clim2ser | 
							⊢ ( 𝜑  →  seq ( 0  +  1 ) (  +  ,  𝐴 )  ⇝  ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐴 ) ‘ 0 ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 52 | 
							
								
							 | 
							seq1 | 
							⊢ ( 0  ∈  ℤ  →  ( seq 0 (  +  ,  𝐴 ) ‘ 0 )  =  ( 𝐴 ‘ 0 ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							ax-mp | 
							⊢ ( seq 0 (  +  ,  𝐴 ) ‘ 0 )  =  ( 𝐴 ‘ 0 )  | 
						
						
							| 54 | 
							
								53
							 | 
							oveq2i | 
							⊢ ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐴 ) ‘ 0 ) )  =  ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) )  | 
						
						
							| 55 | 
							
								50 54
							 | 
							breqtrdi | 
							⊢ ( 𝜑  →  seq ( 0  +  1 ) (  +  ,  𝐴 )  ⇝  ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) ) )  | 
						
						
							| 56 | 
							
								48 55
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ⇝  ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) ) )  | 
						
						
							| 57 | 
							
								11 21 22 56
							 | 
							clim2ser2 | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ⇝  ( ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							seq1 | 
							⊢ ( 0  ∈  ℤ  →  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) )  | 
						
						
							| 59 | 
							
								51 58
							 | 
							ax-mp | 
							⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 )  | 
						
						
							| 60 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑘  =  0  →  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 61 | 
							
								60 36 37
							 | 
							fvmpt | 
							⊢ ( 0  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 )  =  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 62 | 
							
								7 61
							 | 
							ax-mp | 
							⊢ ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 )  =  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 63 | 
							
								59 62
							 | 
							eqtri | 
							⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							oveq2i | 
							⊢ ( ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) )  =  ( ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) )  +  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 65 | 
							
								1 7 9
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ∈  ℂ )  | 
						
						
							| 66 | 
							
								
							 | 
							npncan2 | 
							⊢ ( ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  ∈  ℂ  ∧  ( 𝐴 ‘ 0 )  ∈  ℂ )  →  ( ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) )  +  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  =  0 )  | 
						
						
							| 67 | 
							
								15 65 66
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) )  +  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  =  0 )  | 
						
						
							| 68 | 
							
								64 67
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  ( ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  ( 𝐴 ‘ 0 ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) )  =  0 )  | 
						
						
							| 69 | 
							
								57 68
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ⇝  0 )  | 
						
						
							| 70 | 
							
								
							 | 
							seqex | 
							⊢ seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ∈  V  | 
						
						
							| 71 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 72 | 
							
								70 71
							 | 
							breldm | 
							⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ⇝  0  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 73 | 
							
								69 72
							 | 
							syl | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 74 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) )  =  ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) )  | 
						
						
							| 75 | 
							
								20 73 3 4 5 74 69
							 | 
							abelthlem8 | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) )  <  𝑅 ) )  | 
						
						
							| 76 | 
							
								1 2 3 4 5
							 | 
							abelthlem2 | 
							⊢ ( 𝜑  →  ( 1  ∈  𝑆  ∧  ( 𝑆  ∖  { 1 } )  ⊆  ( 0 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							simpld | 
							⊢ ( 𝜑  →  1  ∈  𝑆 )  | 
						
						
							| 78 | 
							
								77
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  1  ∈  𝑆 )  | 
						
						
							| 79 | 
							
								40
							 | 
							adantl | 
							⊢ ( ( 𝑥  =  1  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  =  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 𝑖 )  =  ( 1 ↑ 𝑖 ) )  | 
						
						
							| 81 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℤ )  | 
						
						
							| 82 | 
							
								
							 | 
							1exp | 
							⊢ ( 𝑖  ∈  ℤ  →  ( 1 ↑ 𝑖 )  =  1 )  | 
						
						
							| 83 | 
							
								81 82
							 | 
							syl | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( 1 ↑ 𝑖 )  =  1 )  | 
						
						
							| 84 | 
							
								80 83
							 | 
							sylan9eq | 
							⊢ ( ( 𝑥  =  1  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑥 ↑ 𝑖 )  =  1 )  | 
						
						
							| 85 | 
							
								79 84
							 | 
							oveq12d | 
							⊢ ( ( 𝑥  =  1  ∧  𝑖  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  =  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							sumeq2dv | 
							⊢ ( 𝑥  =  1  →  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  =  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 ) )  | 
						
						
							| 87 | 
							
								
							 | 
							sumex | 
							⊢ Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 )  ∈  V  | 
						
						
							| 88 | 
							
								86 74 87
							 | 
							fvmpt | 
							⊢ ( 1  ∈  𝑆  →  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  =  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 ) )  | 
						
						
							| 89 | 
							
								78 88
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  =  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 ) )  | 
						
						
							| 90 | 
							
								
							 | 
							0zd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  0  ∈  ℤ )  | 
						
						
							| 91 | 
							
								40
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  =  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 92 | 
							
								65 15
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ∈  ℂ )  | 
						
						
							| 93 | 
							
								92
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ∈  ℂ )  | 
						
						
							| 94 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 95 | 
							
								94
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 96 | 
							
								93 95
							 | 
							ifcld | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ∈  ℂ )  | 
						
						
							| 97 | 
							
								96
							 | 
							mulridd | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 )  =  if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 98 | 
							
								91 97
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  =  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 ) )  | 
						
						
							| 99 | 
							
								97 96
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 )  ∈  ℂ )  | 
						
						
							| 100 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 𝑛 )  =  ( 1 ↑ 𝑛 ) )  | 
						
						
							| 101 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ )  | 
						
						
							| 102 | 
							
								
							 | 
							1exp | 
							⊢ ( 𝑛  ∈  ℤ  →  ( 1 ↑ 𝑛 )  =  1 )  | 
						
						
							| 103 | 
							
								101 102
							 | 
							syl | 
							⊢ ( 𝑛  ∈  ℕ0  →  ( 1 ↑ 𝑛 )  =  1 )  | 
						
						
							| 104 | 
							
								100 103
							 | 
							sylan9eq | 
							⊢ ( ( 𝑥  =  1  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑥 ↑ 𝑛 )  =  1 )  | 
						
						
							| 105 | 
							
								104
							 | 
							oveq2d | 
							⊢ ( ( 𝑥  =  1  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							sumeq2dv | 
							⊢ ( 𝑥  =  1  →  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  1 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑚  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							oveq1d | 
							⊢ ( 𝑛  =  𝑚  →  ( ( 𝐴 ‘ 𝑛 )  ·  1 )  =  ( ( 𝐴 ‘ 𝑚 )  ·  1 ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							cbvsumv | 
							⊢ Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  1 )  =  Σ 𝑚  ∈  ℕ0 ( ( 𝐴 ‘ 𝑚 )  ·  1 )  | 
						
						
							| 110 | 
							
								106 109
							 | 
							eqtrdi | 
							⊢ ( 𝑥  =  1  →  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  Σ 𝑚  ∈  ℕ0 ( ( 𝐴 ‘ 𝑚 )  ·  1 ) )  | 
						
						
							| 111 | 
							
								
							 | 
							sumex | 
							⊢ Σ 𝑚  ∈  ℕ0 ( ( 𝐴 ‘ 𝑚 )  ·  1 )  ∈  V  | 
						
						
							| 112 | 
							
								110 6 111
							 | 
							fvmpt | 
							⊢ ( 1  ∈  𝑆  →  ( 𝐹 ‘ 1 )  =  Σ 𝑚  ∈  ℕ0 ( ( 𝐴 ‘ 𝑚 )  ·  1 ) )  | 
						
						
							| 113 | 
							
								77 112
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  Σ 𝑚  ∈  ℕ0 ( ( 𝐴 ‘ 𝑚 )  ·  1 ) )  | 
						
						
							| 114 | 
							
								14
							 | 
							mulridd | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑚 )  ·  1 )  =  ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							sumeq2dv | 
							⊢ ( 𝜑  →  Σ 𝑚  ∈  ℕ0 ( ( 𝐴 ‘ 𝑚 )  ·  1 )  =  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 116 | 
							
								113 115
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  =  ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 118 | 
							
								15
							 | 
							subidd | 
							⊢ ( 𝜑  →  ( Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  =  0 )  | 
						
						
							| 119 | 
							
								117 118
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  =  0 )  | 
						
						
							| 120 | 
							
								69 119
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ⇝  ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) )  ⇝  ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 122 | 
							
								11 90 98 99 121
							 | 
							isumclim | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  1 )  =  ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 123 | 
							
								89 122
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  =  ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 124 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥 ↑ 𝑖 )  =  ( 𝑦 ↑ 𝑖 ) )  | 
						
						
							| 125 | 
							
								40 124
							 | 
							oveqan12rd | 
							⊢ ( ( 𝑥  =  𝑦  ∧  𝑖  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  =  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							sumeq2dv | 
							⊢ ( 𝑥  =  𝑦  →  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  =  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 127 | 
							
								
							 | 
							sumex | 
							⊢ Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  V  | 
						
						
							| 128 | 
							
								126 74 127
							 | 
							fvmpt | 
							⊢ ( 𝑦  ∈  𝑆  →  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 )  =  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 129 | 
							
								128
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 )  =  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 130 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  𝑖  →  ( 𝑦 ↑ 𝑘 )  =  ( 𝑦 ↑ 𝑖 ) )  | 
						
						
							| 131 | 
							
								35 130
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  𝑖  →  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) )  =  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 132 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 133 | 
							
								
							 | 
							ovex | 
							⊢ ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  V  | 
						
						
							| 134 | 
							
								131 132 133
							 | 
							fvmpt | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 136 | 
							
								5
							 | 
							ssrab3 | 
							⊢ 𝑆  ⊆  ℂ  | 
						
						
							| 137 | 
							
								136
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑆  ⊆  ℂ )  | 
						
						
							| 138 | 
							
								137
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 139 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑖 )  ∈  ℂ )  | 
						
						
							| 141 | 
							
								96 140
							 | 
							mulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  ℂ )  | 
						
						
							| 142 | 
							
								7
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  0  ∈  ℕ0 )  | 
						
						
							| 143 | 
							
								19
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ∈  ℂ )  | 
						
						
							| 144 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 145 | 
							
								138 144
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑦 ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 146 | 
							
								143 145
							 | 
							mulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) )  ∈  ℂ )  | 
						
						
							| 147 | 
							
								146
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 148 | 
							
								147
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 149 | 
							
								45
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 150 | 
							
								32 134
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 151 | 
							
								34 130
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  𝑖  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 152 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) )  | 
						
						
							| 153 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  V  | 
						
						
							| 154 | 
							
								151 152 153
							 | 
							fvmpt | 
							⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 155 | 
							
								32 154
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 156 | 
							
								149 150 155
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) )  | 
						
						
							| 157 | 
							
								30 156
							 | 
							sylan2br | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) )  | 
						
						
							| 158 | 
							
								26 157
							 | 
							seqfeq | 
							⊢ ( 𝜑  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  =  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  =  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) )  | 
						
						
							| 160 | 
							
								18
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 161 | 
							
								160 145
							 | 
							mulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) )  ∈  ℂ )  | 
						
						
							| 162 | 
							
								161
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ )  | 
						
						
							| 163 | 
							
								162
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 164 | 
							
								154
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 165 | 
							
								95 140
							 | 
							mulcld | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  ℂ )  | 
						
						
							| 166 | 
							
								1 2 3 4 5
							 | 
							abelthlem3 | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ∈  dom   ⇝  )  | 
						
						
							| 167 | 
							
								11 90 164 165 166
							 | 
							isumclim2 | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ⇝  Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 168 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑖  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 169 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑖  →  ( 𝑥 ↑ 𝑛 )  =  ( 𝑥 ↑ 𝑖 ) )  | 
						
						
							| 170 | 
							
								168 169
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝑖  →  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) )  | 
						
						
							| 171 | 
							
								170
							 | 
							cbvsumv | 
							⊢ Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  | 
						
						
							| 172 | 
							
								124
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  =  ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							sumeq2sdv | 
							⊢ ( 𝑥  =  𝑦  →  Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) )  =  Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 174 | 
							
								171 173
							 | 
							eqtrid | 
							⊢ ( 𝑥  =  𝑦  →  Σ 𝑛  ∈  ℕ0 ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) )  =  Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 175 | 
							
								
							 | 
							sumex | 
							⊢ Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) )  ∈  V  | 
						
						
							| 176 | 
							
								174 6 175
							 | 
							fvmpt | 
							⊢ ( 𝑦  ∈  𝑆  →  ( 𝐹 ‘ 𝑦 )  =  Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 177 | 
							
								176
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐹 ‘ 𝑦 )  =  Σ 𝑖  ∈  ℕ0 ( ( 𝐴 ‘ 𝑖 )  ·  ( 𝑦 ↑ 𝑖 ) ) )  | 
						
						
							| 178 | 
							
								167 177
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ⇝  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 179 | 
							
								11 142 163 178
							 | 
							clim2ser | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ⇝  ( ( 𝐹 ‘ 𝑦 )  −  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) )  | 
						
						
							| 180 | 
							
								
							 | 
							seq1 | 
							⊢ ( 0  ∈  ℤ  →  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) )  | 
						
						
							| 181 | 
							
								51 180
							 | 
							ax-mp | 
							⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 )  | 
						
						
							| 182 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  0  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 0 ) )  | 
						
						
							| 183 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  0  →  ( 𝑦 ↑ 𝑘 )  =  ( 𝑦 ↑ 0 ) )  | 
						
						
							| 184 | 
							
								182 183
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  0  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) )  =  ( ( 𝐴 ‘ 0 )  ·  ( 𝑦 ↑ 0 ) ) )  | 
						
						
							| 185 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝐴 ‘ 0 )  ·  ( 𝑦 ↑ 0 ) )  ∈  V  | 
						
						
							| 186 | 
							
								184 152 185
							 | 
							fvmpt | 
							⊢ ( 0  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 )  =  ( ( 𝐴 ‘ 0 )  ·  ( 𝑦 ↑ 0 ) ) )  | 
						
						
							| 187 | 
							
								7 186
							 | 
							ax-mp | 
							⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 )  =  ( ( 𝐴 ‘ 0 )  ·  ( 𝑦 ↑ 0 ) )  | 
						
						
							| 188 | 
							
								181 187
							 | 
							eqtri | 
							⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝐴 ‘ 0 )  ·  ( 𝑦 ↑ 0 ) )  | 
						
						
							| 189 | 
							
								138
							 | 
							exp0d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝑦 ↑ 0 )  =  1 )  | 
						
						
							| 190 | 
							
								189
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐴 ‘ 0 )  ·  ( 𝑦 ↑ 0 ) )  =  ( ( 𝐴 ‘ 0 )  ·  1 ) )  | 
						
						
							| 191 | 
							
								65
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐴 ‘ 0 )  ∈  ℂ )  | 
						
						
							| 192 | 
							
								191
							 | 
							mulridd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐴 ‘ 0 )  ·  1 )  =  ( 𝐴 ‘ 0 ) )  | 
						
						
							| 193 | 
							
								190 192
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐴 ‘ 0 )  ·  ( 𝑦 ↑ 0 ) )  =  ( 𝐴 ‘ 0 ) )  | 
						
						
							| 194 | 
							
								188 193
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( 𝐴 ‘ 0 ) )  | 
						
						
							| 195 | 
							
								194
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐹 ‘ 𝑦 )  −  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) )  =  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) ) )  | 
						
						
							| 196 | 
							
								179 195
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ⇝  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) ) )  | 
						
						
							| 197 | 
							
								159 196
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ⇝  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) ) )  | 
						
						
							| 198 | 
							
								11 142 148 197
							 | 
							clim2ser2 | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ⇝  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) )  | 
						
						
							| 199 | 
							
								
							 | 
							seq1 | 
							⊢ ( 0  ∈  ℤ  →  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) )  | 
						
						
							| 200 | 
							
								51 199
							 | 
							ax-mp | 
							⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 )  | 
						
						
							| 201 | 
							
								60 183
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  0  →  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  ( 𝑦 ↑ 0 ) ) )  | 
						
						
							| 202 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  ( 𝑦 ↑ 0 ) )  ∈  V  | 
						
						
							| 203 | 
							
								201 132 202
							 | 
							fvmpt | 
							⊢ ( 0  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 )  =  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  ( 𝑦 ↑ 0 ) ) )  | 
						
						
							| 204 | 
							
								7 203
							 | 
							ax-mp | 
							⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 )  =  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  ( 𝑦 ↑ 0 ) )  | 
						
						
							| 205 | 
							
								200 204
							 | 
							eqtri | 
							⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  ( 𝑦 ↑ 0 ) )  | 
						
						
							| 206 | 
							
								189
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  ( 𝑦 ↑ 0 ) )  =  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  1 ) )  | 
						
						
							| 207 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 )  ∈  ℂ )  | 
						
						
							| 208 | 
							
								191 207
							 | 
							subcld | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ∈  ℂ )  | 
						
						
							| 209 | 
							
								208
							 | 
							mulridd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  1 )  =  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 210 | 
							
								206 209
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  ·  ( 𝑦 ↑ 0 ) )  =  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 211 | 
							
								205 210
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 )  =  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 212 | 
							
								211
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) )  =  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) )  +  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) )  | 
						
						
							| 213 | 
							
								1 2 3 4 5 6
							 | 
							abelthlem4 | 
							⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ ℂ )  | 
						
						
							| 214 | 
							
								213
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ )  | 
						
						
							| 215 | 
							
								214 191 207
							 | 
							npncand | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) )  +  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  =  ( ( 𝐹 ‘ 𝑦 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 216 | 
							
								212 215
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐴 ‘ 0 ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) )  =  ( ( 𝐹 ‘ 𝑦 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 217 | 
							
								198 216
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ⇝  ( ( 𝐹 ‘ 𝑦 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 218 | 
							
								11 90 135 141 217
							 | 
							isumclim | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  Σ 𝑖  ∈  ℕ0 ( if ( 𝑖  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑖 ) )  ·  ( 𝑦 ↑ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑦 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 219 | 
							
								129 218
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑦 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  | 
						
						
							| 220 | 
							
								123 219
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) )  =  ( ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  −  ( ( 𝐹 ‘ 𝑦 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) )  | 
						
						
							| 221 | 
							
								213
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝐹 : 𝑆 ⟶ ℂ )  | 
						
						
							| 222 | 
							
								221 78
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐹 ‘ 1 )  ∈  ℂ )  | 
						
						
							| 223 | 
							
								222 214 207
							 | 
							nnncan2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐹 ‘ 1 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) )  −  ( ( 𝐹 ‘ 𝑦 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) )  =  ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 224 | 
							
								220 223
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 225 | 
							
								224
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) ) )  | 
						
						
							| 226 | 
							
								225
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) )  <  𝑅  ↔  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  | 
						
						
							| 227 | 
							
								226
							 | 
							imbi2d | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) )  <  𝑅 )  ↔  ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) ) )  | 
						
						
							| 228 | 
							
								227
							 | 
							ralbidva | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) )  <  𝑅 )  ↔  ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) ) )  | 
						
						
							| 229 | 
							
								228
							 | 
							rexbidv | 
							⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) )  <  𝑅 )  ↔  ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) ) )  | 
						
						
							| 230 | 
							
								229
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ( ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 )  −  ( ( 𝑥  ∈  𝑆  ↦  Σ 𝑖  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( ( 𝐴 ‘ 0 )  −  Σ 𝑚  ∈  ℕ0 ( 𝐴 ‘ 𝑚 ) ) ,  ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 )  ·  ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) )  <  𝑅 )  ↔  ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) ) )  | 
						
						
							| 231 | 
							
								75 230
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑤  ∈  ℝ+ ∀ 𝑦  ∈  𝑆 ( ( abs ‘ ( 1  −  𝑦 ) )  <  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 1 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑅 ) )  |