Description: Equality of a class variable and a class abstraction. Commuted form of abeq2 . (Contributed by NM, 20-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | abeq1 | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) ) | |
2 | eqcom | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ 𝐴 = { 𝑥 ∣ 𝜑 } ) | |
3 | bicom | ⊢ ( ( 𝜑 ↔ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) ) | |
4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) ) |
5 | 1 2 4 | 3bitr4i | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 ∈ 𝐴 ) ) |