Metamath Proof Explorer


Theorem abeq1

Description: Equality of a class variable and a class abstraction. Commuted form of abeq2 . (Contributed by NM, 20-Aug-1993)

Ref Expression
Assertion abeq1 ( { 𝑥𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 abeq2 ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
2 eqcom ( { 𝑥𝜑 } = 𝐴𝐴 = { 𝑥𝜑 } )
3 bicom ( ( 𝜑𝑥𝐴 ) ↔ ( 𝑥𝐴𝜑 ) )
4 3 albii ( ∀ 𝑥 ( 𝜑𝑥𝐴 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
5 1 2 4 3bitr4i ( { 𝑥𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝜑𝑥𝐴 ) )