Metamath Proof Explorer
Description: Equality of a class variable and a class abstraction (deduction form of
abeq2 ). (Contributed by NM, 16-Nov-1995)
|
|
Ref |
Expression |
|
Hypothesis |
abeq2d.1 |
⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) |
|
Assertion |
abeq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abeq2d.1 |
⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) |
2 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑥 ∣ 𝜓 } ) ) |
3 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜓 ) |
4 |
2 3
|
bitrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) |