Metamath Proof Explorer


Theorem abeq2w

Description: Version of abeq2 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024)

Ref Expression
Hypothesis abeq2w.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion abeq2w ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )

Proof

Step Hyp Ref Expression
1 abeq2w.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 dfcleq ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑦 ( 𝑦𝐴𝑦 ∈ { 𝑥𝜑 } ) )
3 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
4 1 sbievw ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
5 3 4 bitri ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝜓 )
6 5 bibi2i ( ( 𝑦𝐴𝑦 ∈ { 𝑥𝜑 } ) ↔ ( 𝑦𝐴𝜓 ) )
7 6 albii ( ∀ 𝑦 ( 𝑦𝐴𝑦 ∈ { 𝑥𝜑 } ) ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
8 2 7 bitri ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )