Description: Version of abeq2 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abeq2w.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | abeq2w | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2w.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | dfcleq | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
4 | 1 | sbievw | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
5 | 3 4 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
6 | 5 | bibi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
7 | 6 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
8 | 2 7 | bitri | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |