Metamath Proof Explorer
		
		
		
		Description:  Intersection with class abstraction.  (Contributed by Peter Mazsa, 21-Jul-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						abeqin.1 | 
						⊢ 𝐴  =  ( 𝐵  ∩  𝐶 )  | 
					
					
						 | 
						 | 
						abeqin.2 | 
						⊢ 𝐵  =  { 𝑥  ∣  𝜑 }  | 
					
				
					 | 
					Assertion | 
					abeqin | 
					⊢  𝐴  =  { 𝑥  ∈  𝐶  ∣  𝜑 }  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abeqin.1 | 
							⊢ 𝐴  =  ( 𝐵  ∩  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							abeqin.2 | 
							⊢ 𝐵  =  { 𝑥  ∣  𝜑 }  | 
						
						
							| 3 | 
							
								2
							 | 
							ineq1i | 
							⊢ ( 𝐵  ∩  𝐶 )  =  ( { 𝑥  ∣  𝜑 }  ∩  𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							dfrab2 | 
							⊢ { 𝑥  ∈  𝐶  ∣  𝜑 }  =  ( { 𝑥  ∣  𝜑 }  ∩  𝐶 )  | 
						
						
							| 5 | 
							
								3 1 4
							 | 
							3eqtr4i | 
							⊢ 𝐴  =  { 𝑥  ∈  𝐶  ∣  𝜑 }  |