Metamath Proof Explorer
		
		
		
		Description:  Intersection with class abstraction and equivalent wff's.  (Contributed by Peter Mazsa, 21-Jul-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						abeqinbi.1 | 
						⊢ 𝐴  =  ( 𝐵  ∩  𝐶 )  | 
					
					
						 | 
						 | 
						abeqinbi.2 | 
						⊢ 𝐵  =  { 𝑥  ∣  𝜑 }  | 
					
					
						 | 
						 | 
						abeqinbi.3 | 
						⊢ ( 𝑥  ∈  𝐶  →  ( 𝜑  ↔  𝜓 ) )  | 
					
				
					 | 
					Assertion | 
					abeqinbi | 
					⊢  𝐴  =  { 𝑥  ∈  𝐶  ∣  𝜓 }  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abeqinbi.1 | 
							⊢ 𝐴  =  ( 𝐵  ∩  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							abeqinbi.2 | 
							⊢ 𝐵  =  { 𝑥  ∣  𝜑 }  | 
						
						
							| 3 | 
							
								
							 | 
							abeqinbi.3 | 
							⊢ ( 𝑥  ∈  𝐶  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							abeqin | 
							⊢ 𝐴  =  { 𝑥  ∈  𝐶  ∣  𝜑 }  | 
						
						
							| 5 | 
							
								4 3
							 | 
							rabimbieq | 
							⊢ 𝐴  =  { 𝑥  ∈  𝐶  ∣  𝜓 }  |