Metamath Proof Explorer
Description: Conditions for a class abstraction to be a set. Remark: This proof is
shorter than a proof using abexd . (Contributed by AV, 19-Apr-2025)
|
|
Ref |
Expression |
|
Hypotheses |
abex.1 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
|
|
abex.2 |
⊢ 𝐴 ∈ V |
|
Assertion |
abex |
⊢ { 𝑥 ∣ 𝜑 } ∈ V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abex.1 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
2 |
|
abex.2 |
⊢ 𝐴 ∈ V |
3 |
|
abss |
⊢ ( { 𝑥 ∣ 𝜑 } ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ) |
4 |
3 1
|
mpgbir |
⊢ { 𝑥 ∣ 𝜑 } ⊆ 𝐴 |
5 |
2 4
|
ssexi |
⊢ { 𝑥 ∣ 𝜑 } ∈ V |