Metamath Proof Explorer
Description: Conditions for a class abstraction to be a set, deduction form.
(Contributed by AV, 19-Apr-2025)
|
|
Ref |
Expression |
|
Hypotheses |
abexd.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝐴 ) |
|
|
abexd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
Assertion |
abexd |
⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abexd.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝐴 ) |
2 |
|
abexd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
1
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝑥 ∈ 𝐴 ) ) |
4 |
3
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 → 𝑥 ∈ 𝐴 ) ) |
5 |
|
abss |
⊢ ( { 𝑥 ∣ 𝜓 } ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝜓 → 𝑥 ∈ 𝐴 ) ) |
6 |
4 5
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ 𝐴 ) |
7 |
2 6
|
ssexd |
⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ∈ V ) |