Metamath Proof Explorer


Theorem abexd

Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025)

Ref Expression
Hypotheses abexd.1 ( ( 𝜑𝜓 ) → 𝑥𝐴 )
abexd.2 ( 𝜑𝐴𝑉 )
Assertion abexd ( 𝜑 → { 𝑥𝜓 } ∈ V )

Proof

Step Hyp Ref Expression
1 abexd.1 ( ( 𝜑𝜓 ) → 𝑥𝐴 )
2 abexd.2 ( 𝜑𝐴𝑉 )
3 1 ex ( 𝜑 → ( 𝜓𝑥𝐴 ) )
4 3 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝜓𝑥𝐴 ) )
5 abss ( { 𝑥𝜓 } ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝜓𝑥𝐴 ) )
6 4 5 sylibr ( 𝜑 → { 𝑥𝜓 } ⊆ 𝐴 )
7 2 6 ssexd ( 𝜑 → { 𝑥𝜓 } ∈ V )