Metamath Proof Explorer
Description: A condition where a class abstraction continues to exist after its wff
is existentially quantified. (Contributed by NM, 4-Mar-2007)
|
|
Ref |
Expression |
|
Hypotheses |
abexex.1 |
⊢ 𝐴 ∈ V |
|
|
abexex.2 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
|
|
abexex.3 |
⊢ { 𝑦 ∣ 𝜑 } ∈ V |
|
Assertion |
abexex |
⊢ { 𝑦 ∣ ∃ 𝑥 𝜑 } ∈ V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abexex.1 |
⊢ 𝐴 ∈ V |
2 |
|
abexex.2 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
3 |
|
abexex.3 |
⊢ { 𝑦 ∣ 𝜑 } ∈ V |
4 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
5 |
2
|
pm4.71ri |
⊢ ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
7 |
4 6
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 𝜑 ) |
8 |
7
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥 𝜑 } |
9 |
1 3
|
abrexex2 |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ∈ V |
10 |
8 9
|
eqeltrri |
⊢ { 𝑦 ∣ ∃ 𝑥 𝜑 } ∈ V |