Metamath Proof Explorer


Theorem abexssex

Description: Existence of a class abstraction with an existentially quantified expression. Both x and y can be free in ph . (Contributed by NM, 29-Jul-2006)

Ref Expression
Hypotheses abrexex2.1 𝐴 ∈ V
abrexex2.2 { 𝑦𝜑 } ∈ V
Assertion abexssex { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝜑 ) } ∈ V

Proof

Step Hyp Ref Expression
1 abrexex2.1 𝐴 ∈ V
2 abrexex2.2 { 𝑦𝜑 } ∈ V
3 df-rex ( ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴𝜑 ) )
4 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
5 4 anbi1i ( ( 𝑥 ∈ 𝒫 𝐴𝜑 ) ↔ ( 𝑥𝐴𝜑 ) )
6 5 exbii ( ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
7 3 6 bitri ( ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
8 7 abbii { 𝑦 ∣ ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝜑 ) }
9 1 pwex 𝒫 𝐴 ∈ V
10 9 2 abrexex2 { 𝑦 ∣ ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 } ∈ V
11 8 10 eqeltrri { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝜑 ) } ∈ V