Description: Existence of a class abstraction with an existentially quantified expression. Both x and y can be free in ph . (Contributed by NM, 29-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abrexex2.1 | ⊢ 𝐴 ∈ V | |
| abrexex2.2 | ⊢ { 𝑦 ∣ 𝜑 } ∈ V | ||
| Assertion | abexssex | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abrexex2.1 | ⊢ 𝐴 ∈ V | |
| 2 | abrexex2.2 | ⊢ { 𝑦 ∣ 𝜑 } ∈ V | |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝜑 ) ) | |
| 4 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) ) | 
| 6 | 5 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) ) | 
| 7 | 3 6 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) ) | 
| 8 | 7 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } | 
| 9 | 1 | pwex | ⊢ 𝒫 𝐴 ∈ V | 
| 10 | 9 2 | abrexex2 | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝒫 𝐴 𝜑 } ∈ V | 
| 11 | 8 10 | eqeltrri | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝜑 ) } ∈ V |