Metamath Proof Explorer


Theorem abf

Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012) Avoid ax-8 , ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 30-Jun-2024)

Ref Expression
Hypothesis abf.1 ¬ 𝜑
Assertion abf { 𝑥𝜑 } = ∅

Proof

Step Hyp Ref Expression
1 abf.1 ¬ 𝜑
2 1 bifal ( 𝜑 ↔ ⊥ )
3 2 abbii { 𝑥𝜑 } = { 𝑥 ∣ ⊥ }
4 dfnul4 ∅ = { 𝑥 ∣ ⊥ }
5 3 4 eqtr4i { 𝑥𝜑 } = ∅