Step |
Hyp |
Ref |
Expression |
1 |
|
abfmpel.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∣ 𝜑 } ) |
2 |
|
abfmpel.2 |
⊢ { 𝑦 ∣ 𝜑 } ∈ V |
3 |
|
abfmpel.3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
2
|
csbex |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ∈ V |
5 |
1
|
fvmpts |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |
7 |
|
csbab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } |
8 |
6 7
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ) |
9 |
8
|
eleq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ↔ 𝐵 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ↔ 𝐵 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ) ) |
11 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵 ) → 𝐴 ∈ 𝑉 ) |
12 |
3
|
ancoms |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
13 |
12
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵 ) ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
14 |
11 13
|
sbcied |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
15 |
14
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
16 |
15
|
alrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
17 |
|
elabgt |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) → ( 𝐵 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ 𝜓 ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ 𝜓 ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ 𝜓 ) ) |
20 |
10 19
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ↔ 𝜓 ) ) |