| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abfmpeld.1 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑉  ↦  { 𝑦  ∣  𝜓 } )  | 
						
						
							| 2 | 
							
								
							 | 
							abfmpeld.2 | 
							⊢ ( 𝜑  →  { 𝑦  ∣  𝜓 }  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							abfmpeld.3 | 
							⊢ ( 𝜑  →  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝜓  ↔  𝜒 ) ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							alrimiv | 
							⊢ ( 𝜑  →  ∀ 𝑥 { 𝑦  ∣  𝜓 }  ∈  V )  | 
						
						
							| 5 | 
							
								
							 | 
							csbexg | 
							⊢ ( ∀ 𝑥 { 𝑦  ∣  𝜓 }  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  𝜓 }  ∈  V )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							⊢ ( 𝜑  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  𝜓 }  ∈  V )  | 
						
						
							| 7 | 
							
								1
							 | 
							fvmpts | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  𝜓 }  ∈  V )  →  ( 𝐹 ‘ 𝐴 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  𝜓 } )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  →  ( 𝐹 ‘ 𝐴 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  𝜓 } )  | 
						
						
							| 9 | 
							
								
							 | 
							csbab | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  𝜓 }  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝜓 }  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrdi | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  →  ( 𝐹 ‘ 𝐴 )  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝜓 } )  | 
						
						
							| 11 | 
							
								10
							 | 
							eleq2d | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  →  ( 𝐵  ∈  ( 𝐹 ‘ 𝐴 )  ↔  𝐵  ∈  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝜓 } ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  ( 𝐴  ∈  𝑉  ∧  𝜑 ) )  →  ( 𝐵  ∈  ( 𝐹 ‘ 𝐴 )  ↔  𝐵  ∈  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝜓 } ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  ∧  𝑦  =  𝐵 )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 14 | 
							
								3
							 | 
							ancomsd | 
							⊢ ( 𝜑  →  ( ( 𝑦  =  𝐵  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  →  ( ( 𝑦  =  𝐵  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							impl | 
							⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  ∧  𝑦  =  𝐵 )  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							sbcied | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  ∧  𝑦  =  𝐵 )  →  ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜒 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  →  ( 𝑦  =  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜒 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							alrimiv | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝜑 )  →  ∀ 𝑦 ( 𝑦  =  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜒 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							elabgt | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  ∀ 𝑦 ( 𝑦  =  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜒 ) ) )  →  ( 𝐵  ∈  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝜓 }  ↔  𝜒 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							sylan2 | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  ( 𝐴  ∈  𝑉  ∧  𝜑 ) )  →  ( 𝐵  ∈  { 𝑦  ∣  [ 𝐴  /  𝑥 ] 𝜓 }  ↔  𝜒 ) )  | 
						
						
							| 22 | 
							
								12 21
							 | 
							bitrd | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  ( 𝐴  ∈  𝑉  ∧  𝜑 ) )  →  ( 𝐵  ∈  ( 𝐹 ‘ 𝐴 )  ↔  𝜒 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							an13s | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( 𝐵  ∈  ( 𝐹 ‘ 𝐴 )  ↔  𝜒 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐵  ∈  ( 𝐹 ‘ 𝐴 )  ↔  𝜒 ) ) )  |