Metamath Proof Explorer


Theorem abfmpunirn

Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016)

Ref Expression
Hypotheses abfmpunirn.1 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝜑 } )
abfmpunirn.2 { 𝑦𝜑 } ∈ V
abfmpunirn.3 ( 𝑦 = 𝐵 → ( 𝜑𝜓 ) )
Assertion abfmpunirn ( 𝐵 ran 𝐹 ↔ ( 𝐵 ∈ V ∧ ∃ 𝑥𝑉 𝜓 ) )

Proof

Step Hyp Ref Expression
1 abfmpunirn.1 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝜑 } )
2 abfmpunirn.2 { 𝑦𝜑 } ∈ V
3 abfmpunirn.3 ( 𝑦 = 𝐵 → ( 𝜑𝜓 ) )
4 elex ( 𝐵 ran 𝐹𝐵 ∈ V )
5 2 1 fnmpti 𝐹 Fn 𝑉
6 fnunirn ( 𝐹 Fn 𝑉 → ( 𝐵 ran 𝐹 ↔ ∃ 𝑥𝑉 𝐵 ∈ ( 𝐹𝑥 ) ) )
7 5 6 ax-mp ( 𝐵 ran 𝐹 ↔ ∃ 𝑥𝑉 𝐵 ∈ ( 𝐹𝑥 ) )
8 1 fvmpt2 ( ( 𝑥𝑉 ∧ { 𝑦𝜑 } ∈ V ) → ( 𝐹𝑥 ) = { 𝑦𝜑 } )
9 2 8 mpan2 ( 𝑥𝑉 → ( 𝐹𝑥 ) = { 𝑦𝜑 } )
10 9 eleq2d ( 𝑥𝑉 → ( 𝐵 ∈ ( 𝐹𝑥 ) ↔ 𝐵 ∈ { 𝑦𝜑 } ) )
11 10 rexbiia ( ∃ 𝑥𝑉 𝐵 ∈ ( 𝐹𝑥 ) ↔ ∃ 𝑥𝑉 𝐵 ∈ { 𝑦𝜑 } )
12 7 11 bitri ( 𝐵 ran 𝐹 ↔ ∃ 𝑥𝑉 𝐵 ∈ { 𝑦𝜑 } )
13 3 elabg ( 𝐵 ∈ V → ( 𝐵 ∈ { 𝑦𝜑 } ↔ 𝜓 ) )
14 13 rexbidv ( 𝐵 ∈ V → ( ∃ 𝑥𝑉 𝐵 ∈ { 𝑦𝜑 } ↔ ∃ 𝑥𝑉 𝜓 ) )
15 12 14 syl5bb ( 𝐵 ∈ V → ( 𝐵 ran 𝐹 ↔ ∃ 𝑥𝑉 𝜓 ) )
16 4 15 biadanii ( 𝐵 ran 𝐹 ↔ ( 𝐵 ∈ V ∧ ∃ 𝑥𝑉 𝜓 ) )