Step |
Hyp |
Ref |
Expression |
1 |
|
abfmpunirn.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∣ 𝜑 } ) |
2 |
|
abfmpunirn.2 |
⊢ { 𝑦 ∣ 𝜑 } ∈ V |
3 |
|
abfmpunirn.3 |
⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
elex |
⊢ ( 𝐵 ∈ ∪ ran 𝐹 → 𝐵 ∈ V ) |
5 |
2 1
|
fnmpti |
⊢ 𝐹 Fn 𝑉 |
6 |
|
fnunirn |
⊢ ( 𝐹 Fn 𝑉 → ( 𝐵 ∈ ∪ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( 𝐵 ∈ ∪ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ) |
8 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ { 𝑦 ∣ 𝜑 } ∈ V ) → ( 𝐹 ‘ 𝑥 ) = { 𝑦 ∣ 𝜑 } ) |
9 |
2 8
|
mpan2 |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝐹 ‘ 𝑥 ) = { 𝑦 ∣ 𝜑 } ) |
10 |
9
|
eleq2d |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝐵 ∈ { 𝑦 ∣ 𝜑 } ) ) |
11 |
10
|
rexbiia |
⊢ ( ∃ 𝑥 ∈ 𝑉 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑉 𝐵 ∈ { 𝑦 ∣ 𝜑 } ) |
12 |
7 11
|
bitri |
⊢ ( 𝐵 ∈ ∪ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 𝐵 ∈ { 𝑦 ∣ 𝜑 } ) |
13 |
3
|
elabg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜓 ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝐵 ∈ V → ( ∃ 𝑥 ∈ 𝑉 𝐵 ∈ { 𝑦 ∣ 𝜑 } ↔ ∃ 𝑥 ∈ 𝑉 𝜓 ) ) |
15 |
12 14
|
syl5bb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ ∪ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 𝜓 ) ) |
16 |
4 15
|
biadanii |
⊢ ( 𝐵 ∈ ∪ ran 𝐹 ↔ ( 𝐵 ∈ V ∧ ∃ 𝑥 ∈ 𝑉 𝜓 ) ) |