Metamath Proof Explorer


Theorem abid

Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993)

Ref Expression
Assertion abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )

Proof

Step Hyp Ref Expression
1 df-clab ( 𝑥 ∈ { 𝑥𝜑 } ↔ [ 𝑥 / 𝑥 ] 𝜑 )
2 sbid ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )
3 1 2 bitri ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )