Metamath Proof Explorer


Theorem abid2f

Description: A simplification of class abstraction. Theorem 5.2 of Quine p. 35. (Contributed by NM, 5-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 17-Nov-2019)

Ref Expression
Hypothesis abid2f.1 𝑥 𝐴
Assertion abid2f { 𝑥𝑥𝐴 } = 𝐴

Proof

Step Hyp Ref Expression
1 abid2f.1 𝑥 𝐴
2 nfab1 𝑥 { 𝑥𝑥𝐴 }
3 2 1 cleqf ( { 𝑥𝑥𝐴 } = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥𝑥𝐴 } ↔ 𝑥𝐴 ) )
4 abid ( 𝑥 ∈ { 𝑥𝑥𝐴 } ↔ 𝑥𝐴 )
5 3 4 mpgbir { 𝑥𝑥𝐴 } = 𝐴