Metamath Proof Explorer


Theorem abl32

Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablcom.b 𝐵 = ( Base ‘ 𝐺 )
ablcom.p + = ( +g𝐺 )
abl32.g ( 𝜑𝐺 ∈ Abel )
abl32.x ( 𝜑𝑋𝐵 )
abl32.y ( 𝜑𝑌𝐵 )
abl32.z ( 𝜑𝑍𝐵 )
Assertion abl32 ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ablcom.b 𝐵 = ( Base ‘ 𝐺 )
2 ablcom.p + = ( +g𝐺 )
3 abl32.g ( 𝜑𝐺 ∈ Abel )
4 abl32.x ( 𝜑𝑋𝐵 )
5 abl32.y ( 𝜑𝑌𝐵 )
6 abl32.z ( 𝜑𝑍𝐵 )
7 ablcmn ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd )
8 3 7 syl ( 𝜑𝐺 ∈ CMnd )
9 1 2 cmn32 ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) )
10 8 4 5 6 9 syl13anc ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) )