Metamath Proof Explorer
		
		
		
		Description:  Commutative/associative law for Abelian groups.  (Contributed by Stefan
       O'Rear, 10-Apr-2015)  (Revised by Mario Carneiro, 21-Apr-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ablcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | ablcom.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
					
						|  |  | abl32.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
					
						|  |  | abl32.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
					
						|  |  | abl32.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
					
						|  |  | abl32.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
				
					|  | Assertion | abl32 | ⊢  ( 𝜑  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( ( 𝑋  +  𝑍 )  +  𝑌 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablcom.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | abl32.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 4 |  | abl32.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | abl32.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | abl32.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 7 |  | ablcmn | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  CMnd ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 9 | 1 2 | cmn32 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( ( 𝑋  +  𝑍 )  +  𝑌 ) ) | 
						
							| 10 | 8 4 5 6 9 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( ( 𝑋  +  𝑍 )  +  𝑌 ) ) |