| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | ablsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 | 1 2 | ablcom | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) | 
						
							| 5 | 4 | 3adant3r3 | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  −  𝑍 )  =  ( ( 𝑌  +  𝑋 )  −  𝑍 ) ) | 
						
							| 7 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 9 |  | simpr2 | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 10 |  | simpr1 | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 11 |  | simpr3 | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 12 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑌  +  𝑋 )  −  𝑍 )  =  ( 𝑌  +  ( 𝑋  −  𝑍 ) ) ) | 
						
							| 13 | 8 9 10 11 12 | syl13anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑌  +  𝑋 )  −  𝑍 )  =  ( 𝑌  +  ( 𝑋  −  𝑍 ) ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝐺  ∈  Abel ) | 
						
							| 15 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑋  −  𝑍 )  ∈  𝐵 ) | 
						
							| 16 | 8 10 11 15 | syl3anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  −  𝑍 )  ∈  𝐵 ) | 
						
							| 17 | 1 2 | ablcom | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑌  ∈  𝐵  ∧  ( 𝑋  −  𝑍 )  ∈  𝐵 )  →  ( 𝑌  +  ( 𝑋  −  𝑍 ) )  =  ( ( 𝑋  −  𝑍 )  +  𝑌 ) ) | 
						
							| 18 | 14 9 16 17 | syl3anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑌  +  ( 𝑋  −  𝑍 ) )  =  ( ( 𝑋  −  𝑍 )  +  𝑌 ) ) | 
						
							| 19 | 6 13 18 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  −  𝑍 )  =  ( ( 𝑋  −  𝑍 )  +  𝑌 ) ) |