Metamath Proof Explorer


Theorem abladdsub

Description: Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
Assertion abladdsub ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑍 ) + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 1 2 ablcom ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
5 4 3adant3r3 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
6 5 oveq1d ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑌 ) 𝑍 ) = ( ( 𝑌 + 𝑋 ) 𝑍 ) )
7 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
8 7 adantr ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐺 ∈ Grp )
9 simpr2 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
10 simpr1 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
11 simpr3 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
12 1 2 3 grpaddsubass ( ( 𝐺 ∈ Grp ∧ ( 𝑌𝐵𝑋𝐵𝑍𝐵 ) ) → ( ( 𝑌 + 𝑋 ) 𝑍 ) = ( 𝑌 + ( 𝑋 𝑍 ) ) )
13 8 9 10 11 12 syl13anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑌 + 𝑋 ) 𝑍 ) = ( 𝑌 + ( 𝑋 𝑍 ) ) )
14 simpl ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐺 ∈ Abel )
15 1 3 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
16 8 10 11 15 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
17 1 2 ablcom ( ( 𝐺 ∈ Abel ∧ 𝑌𝐵 ∧ ( 𝑋 𝑍 ) ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 𝑍 ) ) = ( ( 𝑋 𝑍 ) + 𝑌 ) )
18 14 9 16 17 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 + ( 𝑋 𝑍 ) ) = ( ( 𝑋 𝑍 ) + 𝑌 ) )
19 6 13 18 3eqtrd ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑍 ) + 𝑌 ) )