Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablcom.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablcom.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 4 | 1 2 | cmncom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |