Metamath Proof Explorer


Theorem ablfac1b

Description: Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablfac1.b 𝐵 = ( Base ‘ 𝐺 )
ablfac1.o 𝑂 = ( od ‘ 𝐺 )
ablfac1.s 𝑆 = ( 𝑝𝐴 ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
ablfac1.g ( 𝜑𝐺 ∈ Abel )
ablfac1.f ( 𝜑𝐵 ∈ Fin )
ablfac1.1 ( 𝜑𝐴 ⊆ ℙ )
Assertion ablfac1b ( 𝜑𝐺 dom DProd 𝑆 )

Proof

Step Hyp Ref Expression
1 ablfac1.b 𝐵 = ( Base ‘ 𝐺 )
2 ablfac1.o 𝑂 = ( od ‘ 𝐺 )
3 ablfac1.s 𝑆 = ( 𝑝𝐴 ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
4 ablfac1.g ( 𝜑𝐺 ∈ Abel )
5 ablfac1.f ( 𝜑𝐵 ∈ Fin )
6 ablfac1.1 ( 𝜑𝐴 ⊆ ℙ )
7 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
8 eqid ( 0g𝐺 ) = ( 0g𝐺 )
9 eqid ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
10 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
11 4 10 syl ( 𝜑𝐺 ∈ Grp )
12 prmex ℙ ∈ V
13 12 ssex ( 𝐴 ⊆ ℙ → 𝐴 ∈ V )
14 6 13 syl ( 𝜑𝐴 ∈ V )
15 4 adantr ( ( 𝜑𝑝𝐴 ) → 𝐺 ∈ Abel )
16 6 sselda ( ( 𝜑𝑝𝐴 ) → 𝑝 ∈ ℙ )
17 prmnn ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ )
18 16 17 syl ( ( 𝜑𝑝𝐴 ) → 𝑝 ∈ ℕ )
19 1 grpbn0 ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ )
20 11 19 syl ( 𝜑𝐵 ≠ ∅ )
21 hashnncl ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) )
22 5 21 syl ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) )
23 20 22 mpbird ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ )
24 23 adantr ( ( 𝜑𝑝𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ )
25 16 24 pccld ( ( 𝜑𝑝𝐴 ) → ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 )
26 18 25 nnexpcld ( ( 𝜑𝑝𝐴 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ )
27 26 nnzd ( ( 𝜑𝑝𝐴 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ )
28 2 1 oddvdssubg ( ( 𝐺 ∈ Abel ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ) → { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) )
29 15 27 28 syl2anc ( ( 𝜑𝑝𝐴 ) → { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) )
30 29 3 fmptd ( 𝜑𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
31 4 adantr ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐴𝑎𝑏 ) ) → 𝐺 ∈ Abel )
32 30 adantr ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐴𝑎𝑏 ) ) → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
33 simpr1 ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐴𝑎𝑏 ) ) → 𝑎𝐴 )
34 32 33 ffvelrnd ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐴𝑎𝑏 ) ) → ( 𝑆𝑎 ) ∈ ( SubGrp ‘ 𝐺 ) )
35 simpr2 ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐴𝑎𝑏 ) ) → 𝑏𝐴 )
36 32 35 ffvelrnd ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐴𝑎𝑏 ) ) → ( 𝑆𝑏 ) ∈ ( SubGrp ‘ 𝐺 ) )
37 7 31 34 36 ablcntzd ( ( 𝜑 ∧ ( 𝑎𝐴𝑏𝐴𝑎𝑏 ) ) → ( 𝑆𝑎 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑏 ) ) )
38 id ( 𝑝 = 𝑎𝑝 = 𝑎 )
39 oveq1 ( 𝑝 = 𝑎 → ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) = ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) )
40 38 39 oveq12d ( 𝑝 = 𝑎 → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) = ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) )
41 40 breq2d ( 𝑝 = 𝑎 → ( ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ↔ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) )
42 41 rabbidv ( 𝑝 = 𝑎 → { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } = { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
43 1 fvexi 𝐵 ∈ V
44 43 rabex { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ V
45 42 3 44 fvmpt3i ( 𝑎𝐴 → ( 𝑆𝑎 ) = { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
46 45 adantl ( ( 𝜑𝑎𝐴 ) → ( 𝑆𝑎 ) = { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
47 eqimss ( ( 𝑆𝑎 ) = { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } → ( 𝑆𝑎 ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
48 46 47 syl ( ( 𝜑𝑎𝐴 ) → ( 𝑆𝑎 ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
49 4 adantr ( ( 𝜑𝑎𝐴 ) → 𝐺 ∈ Abel )
50 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
51 50 subgacs ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) )
52 acsmre ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) )
53 49 10 51 52 4syl ( ( 𝜑𝑎𝐴 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) )
54 df-ima ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) = ran ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) )
55 6 sselda ( ( 𝜑𝑎𝐴 ) → 𝑎 ∈ ℙ )
56 55 ad2antrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑎 ∈ ℙ )
57 23 ad3antrrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ )
58 pcdvds ( ( 𝑎 ∈ ℙ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) )
59 56 57 58 syl2anc ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) )
60 6 ad3antrrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝐴 ⊆ ℙ )
61 eldifi ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) → 𝑝𝐴 )
62 61 ad2antlr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑝𝐴 )
63 60 62 sseldd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑝 ∈ ℙ )
64 pcdvds ( ( 𝑝 ∈ ℙ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) )
65 63 57 64 syl2anc ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) )
66 eqid ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) = ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) )
67 eqid ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) )
68 1 2 3 4 5 6 66 67 ablfac1lem ( ( 𝜑𝑎𝐴 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ ) ∧ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) = 1 ∧ ( ♯ ‘ 𝐵 ) = ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) )
69 68 simp1d ( ( 𝜑𝑎𝐴 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ ) )
70 69 simpld ( ( 𝜑𝑎𝐴 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ )
71 70 ad2antrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ )
72 71 nnzd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ )
73 63 17 syl ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑝 ∈ ℕ )
74 63 57 pccld ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 )
75 73 74 nnexpcld ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ )
76 75 nnzd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ )
77 57 nnzd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℤ )
78 eldifsni ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) → 𝑝𝑎 )
79 78 ad2antlr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑝𝑎 )
80 79 necomd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑎𝑝 )
81 prmrp ( ( 𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑎 gcd 𝑝 ) = 1 ↔ 𝑎𝑝 ) )
82 56 63 81 syl2anc ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( 𝑎 gcd 𝑝 ) = 1 ↔ 𝑎𝑝 ) )
83 80 82 mpbird ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑎 gcd 𝑝 ) = 1 )
84 prmz ( 𝑎 ∈ ℙ → 𝑎 ∈ ℤ )
85 56 84 syl ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑎 ∈ ℤ )
86 prmz ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ )
87 63 86 syl ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → 𝑝 ∈ ℤ )
88 56 57 pccld ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 )
89 rpexp12i ( ( 𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ( ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ∧ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) ) → ( ( 𝑎 gcd 𝑝 ) = 1 → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 ) )
90 85 87 88 74 89 syl112anc ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( 𝑎 gcd 𝑝 ) = 1 → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 ) )
91 83 90 mpd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 )
92 coprmdvds2 ( ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) ∧ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) )
93 72 76 77 91 92 syl31anc ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) )
94 59 65 93 mp2and ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ♯ ‘ 𝐵 ) )
95 68 simp3d ( ( 𝜑𝑎𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
96 95 ad2antrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ♯ ‘ 𝐵 ) = ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
97 94 96 breqtrd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
98 69 simprd ( ( 𝜑𝑎𝐴 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ )
99 98 ad2antrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ )
100 99 nnzd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ )
101 71 nnne0d ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ≠ 0 )
102 dvdscmulr ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ∧ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ≠ 0 ) ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
103 76 100 72 101 102 syl112anc ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
104 97 103 mpbid ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) )
105 1 2 odcl ( 𝑥𝐵 → ( 𝑂𝑥 ) ∈ ℕ0 )
106 105 adantl ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑂𝑥 ) ∈ ℕ0 )
107 106 nn0zd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( 𝑂𝑥 ) ∈ ℤ )
108 dvdstr ( ( ( 𝑂𝑥 ) ∈ ℤ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ) → ( ( ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) → ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
109 107 76 100 108 syl3anc ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) → ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
110 104 109 mpan2d ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥𝐵 ) → ( ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) → ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) )
111 110 ss2rabdv ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) → { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
112 44 elpw ( { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ 𝒫 { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ↔ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
113 111 112 sylibr ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) → { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ 𝒫 { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
114 3 reseq1i ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( ( 𝑝𝐴 ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) ↾ ( 𝐴 ∖ { 𝑎 } ) )
115 difss ( 𝐴 ∖ { 𝑎 } ) ⊆ 𝐴
116 resmpt ( ( 𝐴 ∖ { 𝑎 } ) ⊆ 𝐴 → ( ( 𝑝𝐴 ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) )
117 115 116 ax-mp ( ( 𝑝𝐴 ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
118 114 117 eqtri ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
119 113 118 fmptd ( ( 𝜑𝑎𝐴 ) → ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) : ( 𝐴 ∖ { 𝑎 } ) ⟶ 𝒫 { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
120 119 frnd ( ( 𝜑𝑎𝐴 ) → ran ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ 𝒫 { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
121 54 120 eqsstrid ( ( 𝜑𝑎𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ 𝒫 { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
122 sspwuni ( ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ 𝒫 { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ↔ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
123 121 122 sylib ( ( 𝜑𝑎𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
124 98 nnzd ( ( 𝜑𝑎𝐴 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ )
125 2 1 oddvdssubg ( ( 𝐺 ∈ Abel ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ) → { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) )
126 49 124 125 syl2anc ( ( 𝜑𝑎𝐴 ) → { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) )
127 9 mrcsscl ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∧ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
128 53 123 126 127 syl3anc ( ( 𝜑𝑎𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } )
129 ss2in ( ( ( 𝑆𝑎 ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ⊆ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) → ( ( 𝑆𝑎 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ) ⊆ ( { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) )
130 48 128 129 syl2anc ( ( 𝜑𝑎𝐴 ) → ( ( 𝑆𝑎 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ) ⊆ ( { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) )
131 eqid { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } = { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) }
132 eqid { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } = { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) }
133 68 simp2d ( ( 𝜑𝑎𝐴 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) = 1 )
134 eqid ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 )
135 1 2 131 132 49 70 98 133 95 8 134 ablfacrp ( ( 𝜑𝑎𝐴 ) → ( ( { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) = { ( 0g𝐺 ) } ∧ ( { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ( LSSum ‘ 𝐺 ) { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) = 𝐵 ) )
136 135 simpld ( ( 𝜑𝑎𝐴 ) → ( { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) = { ( 0g𝐺 ) } )
137 130 136 sseqtrd ( ( 𝜑𝑎𝐴 ) → ( ( 𝑆𝑎 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ) ⊆ { ( 0g𝐺 ) } )
138 7 8 9 11 14 30 37 137 dmdprdd ( 𝜑𝐺 dom DProd 𝑆 )