Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablfac1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
ablfac1.s |
⊢ 𝑆 = ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
4 |
|
ablfac1.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
5 |
|
ablfac1.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
6 |
|
ablfac1.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℙ ) |
7 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
10 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
12 |
|
prmex |
⊢ ℙ ∈ V |
13 |
12
|
ssex |
⊢ ( 𝐴 ⊆ ℙ → 𝐴 ∈ V ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝐺 ∈ Abel ) |
16 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ℙ ) |
17 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ℕ ) |
19 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
20 |
11 19
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
21 |
|
hashnncl |
⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
22 |
5 21
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
23 |
20 22
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
25 |
16 24
|
pccld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
26 |
18 25
|
nnexpcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ) |
27 |
26
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ) |
28 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
29 |
15 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
30 |
29 3
|
fmptd |
⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
31 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏 ) ) → 𝐺 ∈ Abel ) |
32 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏 ) ) → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
33 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 ∈ 𝐴 ) |
34 |
32 33
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑆 ‘ 𝑎 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
35 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 ∈ 𝐴 ) |
36 |
32 35
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑆 ‘ 𝑏 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
37 |
7 31 34 36
|
ablcntzd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑆 ‘ 𝑎 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑏 ) ) ) |
38 |
|
id |
⊢ ( 𝑝 = 𝑎 → 𝑝 = 𝑎 ) |
39 |
|
oveq1 |
⊢ ( 𝑝 = 𝑎 → ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) = ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) |
40 |
38 39
|
oveq12d |
⊢ ( 𝑝 = 𝑎 → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) = ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑝 = 𝑎 → ( ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ↔ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) |
42 |
41
|
rabbidv |
⊢ ( 𝑝 = 𝑎 → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
43 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
44 |
43
|
rabex |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ V |
45 |
42 3 44
|
fvmpt3i |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑆 ‘ 𝑎 ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑎 ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
47 |
|
eqimss |
⊢ ( ( 𝑆 ‘ 𝑎 ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } → ( 𝑆 ‘ 𝑎 ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑎 ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
49 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐺 ∈ Abel ) |
50 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
51 |
50
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
52 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
53 |
49 10 51 52
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
54 |
|
df-ima |
⊢ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) = ran ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) |
55 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℙ ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑎 ∈ ℙ ) |
57 |
23
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
58 |
|
pcdvds |
⊢ ( ( 𝑎 ∈ ℙ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
59 |
56 57 58
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
60 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ⊆ ℙ ) |
61 |
|
eldifi |
⊢ ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) → 𝑝 ∈ 𝐴 ) |
62 |
61
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑝 ∈ 𝐴 ) |
63 |
60 62
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑝 ∈ ℙ ) |
64 |
|
pcdvds |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
65 |
63 57 64
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
66 |
|
eqid |
⊢ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) = ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) |
67 |
|
eqid |
⊢ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
68 |
1 2 3 4 5 6 66 67
|
ablfac1lem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ ) ∧ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) = 1 ∧ ( ♯ ‘ 𝐵 ) = ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) ) |
69 |
68
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ ) ) |
70 |
69
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ) |
72 |
71
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ) |
73 |
63 17
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑝 ∈ ℕ ) |
74 |
63 57
|
pccld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
75 |
73 74
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℕ ) |
76 |
75
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ) |
77 |
57
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
78 |
|
eldifsni |
⊢ ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) → 𝑝 ≠ 𝑎 ) |
79 |
78
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑝 ≠ 𝑎 ) |
80 |
79
|
necomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑎 ≠ 𝑝 ) |
81 |
|
prmrp |
⊢ ( ( 𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑎 gcd 𝑝 ) = 1 ↔ 𝑎 ≠ 𝑝 ) ) |
82 |
56 63 81
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑎 gcd 𝑝 ) = 1 ↔ 𝑎 ≠ 𝑝 ) ) |
83 |
80 82
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑎 gcd 𝑝 ) = 1 ) |
84 |
|
prmz |
⊢ ( 𝑎 ∈ ℙ → 𝑎 ∈ ℤ ) |
85 |
56 84
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑎 ∈ ℤ ) |
86 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
87 |
63 86
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑝 ∈ ℤ ) |
88 |
56 57
|
pccld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
89 |
|
rpexp12i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ( ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ∧ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) ) → ( ( 𝑎 gcd 𝑝 ) = 1 → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 ) ) |
90 |
85 87 88 74 89
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑎 gcd 𝑝 ) = 1 → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 ) ) |
91 |
83 90
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 ) |
92 |
|
coprmdvds2 |
⊢ ( ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) ∧ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) = 1 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) ) |
93 |
72 76 77 91 92
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) ) |
94 |
59 65 93
|
mp2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
95 |
68
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
96 |
95
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) = ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
97 |
94 96
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
98 |
69
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ ) |
99 |
98
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℕ ) |
100 |
99
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ) |
101 |
71
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ≠ 0 ) |
102 |
|
dvdscmulr |
⊢ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ∧ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ≠ 0 ) ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
103 |
76 100 72 101 102
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∥ ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) · ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
104 |
97 103
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) |
105 |
1 2
|
odcl |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
106 |
105
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
107 |
106
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℤ ) |
108 |
|
dvdstr |
⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∈ ℤ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) → ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
109 |
107 76 100 108
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) → ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
110 |
104 109
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
111 |
110
|
ss2rabdv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
112 |
44
|
elpw |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ 𝒫 { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ↔ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
113 |
111 112
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ 𝒫 { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
114 |
3
|
reseq1i |
⊢ ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) ↾ ( 𝐴 ∖ { 𝑎 } ) ) |
115 |
|
difss |
⊢ ( 𝐴 ∖ { 𝑎 } ) ⊆ 𝐴 |
116 |
|
resmpt |
⊢ ( ( 𝐴 ∖ { 𝑎 } ) ⊆ 𝐴 → ( ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) ) |
117 |
115 116
|
ax-mp |
⊢ ( ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
118 |
114 117
|
eqtri |
⊢ ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) = ( 𝑝 ∈ ( 𝐴 ∖ { 𝑎 } ) ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
119 |
113 118
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) : ( 𝐴 ∖ { 𝑎 } ) ⟶ 𝒫 { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
120 |
119
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ran ( 𝑆 ↾ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ 𝒫 { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
121 |
54 120
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ 𝒫 { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
122 |
|
sspwuni |
⊢ ( ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ 𝒫 { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ↔ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
123 |
121 122
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
124 |
98
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ) |
125 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
126 |
49 124 125
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
127 |
9
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∧ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
128 |
53 123 126 127
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) |
129 |
|
ss2in |
⊢ ( ( ( 𝑆 ‘ 𝑎 ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) → ( ( 𝑆 ‘ 𝑎 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ) ⊆ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) ) |
130 |
48 128 129
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑎 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ) ⊆ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) ) |
131 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } |
132 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } |
133 |
68
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) gcd ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) = 1 ) |
134 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
135 |
1 2 131 132 49 70 98 133 95 8 134
|
ablfacrp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) = { ( 0g ‘ 𝐺 ) } ∧ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ( LSSum ‘ 𝐺 ) { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) = 𝐵 ) ) |
136 |
135
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∩ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( ( ♯ ‘ 𝐵 ) / ( 𝑎 ↑ ( 𝑎 pCnt ( ♯ ‘ 𝐵 ) ) ) ) } ) = { ( 0g ‘ 𝐺 ) } ) |
137 |
130 136
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑎 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐴 ∖ { 𝑎 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
138 |
7 8 9 11 14 30 37 137
|
dmdprdd |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |