Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablfac1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
ablfac1.s |
⊢ 𝑆 = ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
4 |
|
ablfac1.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
5 |
|
ablfac1.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
6 |
|
ablfac1.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℙ ) |
7 |
|
ablfac1c.d |
⊢ 𝐷 = { 𝑤 ∈ ℙ ∣ 𝑤 ∥ ( ♯ ‘ 𝐵 ) } |
8 |
|
ablfac1.2 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
9 |
1
|
dprdssv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 ) |
11 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 ) → ( 𝐺 DProd 𝑆 ) ∈ Fin ) |
12 |
5 9 11
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ∈ Fin ) |
13 |
|
hashcl |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ Fin → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ0 ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ0 ) |
15 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
17 |
1 2 3 4 5 6
|
ablfac1b |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
18 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
1
|
lagsubg |
⊢ ( ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
21 |
19 5 20
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
22 |
|
breq1 |
⊢ ( 𝑤 = 𝑞 → ( 𝑤 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
23 |
22 7
|
elrab2 |
⊢ ( 𝑞 ∈ 𝐷 ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
24 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐷 → 𝑞 ∈ 𝐴 ) ) |
25 |
23 24
|
syl5bir |
⊢ ( 𝜑 → ( ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑞 ∈ 𝐴 ) ) |
26 |
25
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑞 ∈ 𝐴 ) |
27 |
1 2 3 4 5 6
|
ablfac1a |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) = ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
28 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
29 |
28
|
rabex |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ V |
30 |
29 3
|
dmmpti |
⊢ dom 𝑆 = 𝐴 |
31 |
30
|
a1i |
⊢ ( 𝜑 → dom 𝑆 = 𝐴 ) |
32 |
17 31
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
33 |
32
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
34 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝐺 dom DProd 𝑆 ) |
35 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → dom 𝑆 = 𝐴 ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
37 |
34 35 36
|
dprdub |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑞 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
38 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
39 |
|
eqid |
⊢ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) = ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) |
40 |
39
|
subsubg |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ↔ ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑞 ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) ) |
41 |
38 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ↔ ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑞 ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) ) |
42 |
33 37 41
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) |
43 |
39
|
subgbas |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 DProd 𝑆 ) = ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) |
44 |
38 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝐺 DProd 𝑆 ) = ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) |
45 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝐺 DProd 𝑆 ) ∈ Fin ) |
46 |
44 45
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ∈ Fin ) |
47 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) = ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) |
48 |
47
|
lagsubg |
⊢ ( ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ∧ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ∈ Fin ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) ) |
49 |
42 46 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) ) |
50 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) ) |
51 |
49 50
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) |
52 |
27 51
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) |
53 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ ℙ ) |
54 |
14
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ) |
56 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) |
57 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
58 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
59 |
4 57 58
|
3syl |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
60 |
|
hashnncl |
⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
61 |
5 60
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
62 |
59 61
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
64 |
56 63
|
pccld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
65 |
53 64
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
66 |
|
pcdvdsb |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ∧ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ↔ ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
67 |
53 55 65 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ↔ ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
68 |
52 67
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
69 |
68
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
70 |
26 69
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
71 |
|
pceq0 |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) = 0 ↔ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
72 |
56 63 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) = 0 ↔ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
73 |
72
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) = 0 ) |
74 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
75 |
74
|
subg0cl |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
76 |
|
ne0i |
⊢ ( ( 0g ‘ 𝐺 ) ∈ ( 𝐺 DProd 𝑆 ) → ( 𝐺 DProd 𝑆 ) ≠ ∅ ) |
77 |
19 75 76
|
3syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ≠ ∅ ) |
78 |
|
hashnncl |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ Fin → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ↔ ( 𝐺 DProd 𝑆 ) ≠ ∅ ) ) |
79 |
12 78
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ↔ ( 𝐺 DProd 𝑆 ) ≠ ∅ ) ) |
80 |
77 79
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ) |
82 |
56 81
|
pccld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ∈ ℕ0 ) |
83 |
82
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 0 ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → 0 ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
85 |
73 84
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
86 |
70 85
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
87 |
86
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
88 |
16
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
89 |
|
pc2dvds |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℤ ∧ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ) → ( ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) ) |
90 |
88 54 89
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) ) |
91 |
87 90
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) |
92 |
|
dvdseq |
⊢ ( ( ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ∧ ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∥ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ) |
93 |
14 16 21 91 92
|
syl22anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ) |
94 |
|
hashen |
⊢ ( ( ( 𝐺 DProd 𝑆 ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) ) |
95 |
12 5 94
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) ) |
96 |
93 95
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) |
97 |
|
fisseneq |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 ∧ ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) → ( 𝐺 DProd 𝑆 ) = 𝐵 ) |
98 |
5 10 96 97
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = 𝐵 ) |