| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ablfac1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ablfac1.o | 
							⊢ 𝑂  =  ( od ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ablfac1.s | 
							⊢ 𝑆  =  ( 𝑝  ∈  𝐴  ↦  { 𝑥  ∈  𝐵  ∣  ( 𝑂 ‘ 𝑥 )  ∥  ( 𝑝 ↑ ( 𝑝  pCnt  ( ♯ ‘ 𝐵 ) ) ) } )  | 
						
						
							| 4 | 
							
								
							 | 
							ablfac1.g | 
							⊢ ( 𝜑  →  𝐺  ∈  Abel )  | 
						
						
							| 5 | 
							
								
							 | 
							ablfac1.f | 
							⊢ ( 𝜑  →  𝐵  ∈  Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							ablfac1.1 | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℙ )  | 
						
						
							| 7 | 
							
								
							 | 
							ablfac1c.d | 
							⊢ 𝐷  =  { 𝑤  ∈  ℙ  ∣  𝑤  ∥  ( ♯ ‘ 𝐵 ) }  | 
						
						
							| 8 | 
							
								
							 | 
							ablfac1.2 | 
							⊢ ( 𝜑  →  𝐷  ⊆  𝐴 )  | 
						
						
							| 9 | 
							
								1
							 | 
							dprdssv | 
							⊢ ( 𝐺  DProd  𝑆 )  ⊆  𝐵  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ⊆  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							ssfi | 
							⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝐺  DProd  𝑆 )  ⊆  𝐵 )  →  ( 𝐺  DProd  𝑆 )  ∈  Fin )  | 
						
						
							| 12 | 
							
								5 9 11
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ∈  Fin )  | 
						
						
							| 13 | 
							
								
							 | 
							hashcl | 
							⊢ ( ( 𝐺  DProd  𝑆 )  ∈  Fin  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℕ0 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℕ0 )  | 
						
						
							| 15 | 
							
								
							 | 
							hashcl | 
							⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6
							 | 
							ablfac1b | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 18 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 20 | 
							
								1
							 | 
							lagsubg | 
							⊢ ( ( ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∥  ( ♯ ‘ 𝐵 ) )  | 
						
						
							| 21 | 
							
								19 5 20
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∥  ( ♯ ‘ 𝐵 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑤  =  𝑞  →  ( 𝑤  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑞  ∥  ( ♯ ‘ 𝐵 ) ) )  | 
						
						
							| 23 | 
							
								22 7
							 | 
							elrab2 | 
							⊢ ( 𝑞  ∈  𝐷  ↔  ( 𝑞  ∈  ℙ  ∧  𝑞  ∥  ( ♯ ‘ 𝐵 ) ) )  | 
						
						
							| 24 | 
							
								8
							 | 
							sseld | 
							⊢ ( 𝜑  →  ( 𝑞  ∈  𝐷  →  𝑞  ∈  𝐴 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							biimtrrid | 
							⊢ ( 𝜑  →  ( ( 𝑞  ∈  ℙ  ∧  𝑞  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑞  ∈  𝐴 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							impl | 
							⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  𝑞  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑞  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								1 2 3 4 5 6
							 | 
							ablfac1a | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) )  =  ( 𝑞 ↑ ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) ) ) )  | 
						
						
							| 28 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 29 | 
							
								28
							 | 
							rabex | 
							⊢ { 𝑥  ∈  𝐵  ∣  ( 𝑂 ‘ 𝑥 )  ∥  ( 𝑝 ↑ ( 𝑝  pCnt  ( ♯ ‘ 𝐵 ) ) ) }  ∈  V  | 
						
						
							| 30 | 
							
								29 3
							 | 
							dmmpti | 
							⊢ dom  𝑆  =  𝐴  | 
						
						
							| 31 | 
							
								30
							 | 
							a1i | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐴 )  | 
						
						
							| 32 | 
							
								17 31
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝑆 ‘ 𝑞 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 34 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 35 | 
							
								30
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  dom  𝑆  =  𝐴 )  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  𝑞  ∈  𝐴 )  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							dprdub | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝑆 ‘ 𝑞 )  ⊆  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 38 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  =  ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							subsubg | 
							⊢ ( ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 )  →  ( ( 𝑆 ‘ 𝑞 )  ∈  ( SubGrp ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) )  ↔  ( ( 𝑆 ‘ 𝑞 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑆 ‘ 𝑞 )  ⊆  ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( ( 𝑆 ‘ 𝑞 )  ∈  ( SubGrp ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) )  ↔  ( ( 𝑆 ‘ 𝑞 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑆 ‘ 𝑞 )  ⊆  ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 42 | 
							
								33 37 41
							 | 
							mpbir2and | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝑆 ‘ 𝑞 )  ∈  ( SubGrp ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 43 | 
							
								39
							 | 
							subgbas | 
							⊢ ( ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  DProd  𝑆 )  =  ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 44 | 
							
								38 43
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝐺  DProd  𝑆 )  =  ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 45 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝐺  DProd  𝑆 )  ∈  Fin )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) )  ∈  Fin )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) )  =  ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							lagsubg | 
							⊢ ( ( ( 𝑆 ‘ 𝑞 )  ∈  ( SubGrp ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) )  ∧  ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) )  ∈  Fin )  →  ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) )  ∥  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) ) ) )  | 
						
						
							| 49 | 
							
								42 46 48
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) )  ∥  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) ) ) )  | 
						
						
							| 50 | 
							
								44
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  =  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) ) ) ) )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 52 | 
							
								27 51
							 | 
							eqbrtrrd | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝑞 ↑ ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) ) )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 53 | 
							
								6
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  𝑞  ∈  ℙ )  | 
						
						
							| 54 | 
							
								14
							 | 
							nn0zd | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℤ )  | 
						
						
							| 55 | 
							
								54
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℤ )  | 
						
						
							| 56 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  𝑞  ∈  ℙ )  | 
						
						
							| 57 | 
							
								
							 | 
							ablgrp | 
							⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp )  | 
						
						
							| 58 | 
							
								1
							 | 
							grpbn0 | 
							⊢ ( 𝐺  ∈  Grp  →  𝐵  ≠  ∅ )  | 
						
						
							| 59 | 
							
								4 57 58
							 | 
							3syl | 
							⊢ ( 𝜑  →  𝐵  ≠  ∅ )  | 
						
						
							| 60 | 
							
								
							 | 
							hashnncl | 
							⊢ ( 𝐵  ∈  Fin  →  ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  𝐵  ≠  ∅ ) )  | 
						
						
							| 61 | 
							
								5 60
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  𝐵  ≠  ∅ ) )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ )  | 
						
						
							| 64 | 
							
								56 63
							 | 
							pccld | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ∈  ℕ0 )  | 
						
						
							| 65 | 
							
								53 64
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ∈  ℕ0 )  | 
						
						
							| 66 | 
							
								
							 | 
							pcdvdsb | 
							⊢ ( ( 𝑞  ∈  ℙ  ∧  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℤ  ∧  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ∈  ℕ0 )  →  ( ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) )  ↔  ( 𝑞 ↑ ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) ) )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 67 | 
							
								53 55 65 66
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) )  ↔  ( 𝑞 ↑ ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) ) )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 68 | 
							
								52 67
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐴 )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  𝑞  ∈  𝐴 )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 70 | 
							
								26 69
							 | 
							syldan | 
							⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  𝑞  ∥  ( ♯ ‘ 𝐵 ) )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							pceq0 | 
							⊢ ( ( 𝑞  ∈  ℙ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ )  →  ( ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  =  0  ↔  ¬  𝑞  ∥  ( ♯ ‘ 𝐵 ) ) )  | 
						
						
							| 72 | 
							
								56 63 71
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  =  0  ↔  ¬  𝑞  ∥  ( ♯ ‘ 𝐵 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							biimpar | 
							⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  ¬  𝑞  ∥  ( ♯ ‘ 𝐵 ) )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  =  0 )  | 
						
						
							| 74 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 75 | 
							
								74
							 | 
							subg0cl | 
							⊢ ( ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 76 | 
							
								
							 | 
							ne0i | 
							⊢ ( ( 0g ‘ 𝐺 )  ∈  ( 𝐺  DProd  𝑆 )  →  ( 𝐺  DProd  𝑆 )  ≠  ∅ )  | 
						
						
							| 77 | 
							
								19 75 76
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ≠  ∅ )  | 
						
						
							| 78 | 
							
								
							 | 
							hashnncl | 
							⊢ ( ( 𝐺  DProd  𝑆 )  ∈  Fin  →  ( ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℕ  ↔  ( 𝐺  DProd  𝑆 )  ≠  ∅ ) )  | 
						
						
							| 79 | 
							
								12 78
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℕ  ↔  ( 𝐺  DProd  𝑆 )  ≠  ∅ ) )  | 
						
						
							| 80 | 
							
								77 79
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℕ )  | 
						
						
							| 81 | 
							
								80
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℕ )  | 
						
						
							| 82 | 
							
								56 81
							 | 
							pccld | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) )  ∈  ℕ0 )  | 
						
						
							| 83 | 
							
								82
							 | 
							nn0ge0d | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  0  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  ¬  𝑞  ∥  ( ♯ ‘ 𝐵 ) )  →  0  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 85 | 
							
								73 84
							 | 
							eqbrtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  ¬  𝑞  ∥  ( ♯ ‘ 𝐵 ) )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 86 | 
							
								70 85
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑞  ∈  ℙ ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  | 
						
						
							| 88 | 
							
								16
							 | 
							nn0zd | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℤ )  | 
						
						
							| 89 | 
							
								
							 | 
							pc2dvds | 
							⊢ ( ( ( ♯ ‘ 𝐵 )  ∈  ℤ  ∧  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℤ )  →  ( ( ♯ ‘ 𝐵 )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ↔  ∀ 𝑞  ∈  ℙ ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) ) )  | 
						
						
							| 90 | 
							
								88 54 89
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ↔  ∀ 𝑞  ∈  ℙ ( 𝑞  pCnt  ( ♯ ‘ 𝐵 ) )  ≤  ( 𝑞  pCnt  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) ) )  | 
						
						
							| 91 | 
							
								87 90
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							dvdseq | 
							⊢ ( ( ( ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ0 )  ∧  ( ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  ∥  ( ♯ ‘ 𝐵 )  ∧  ( ♯ ‘ 𝐵 )  ∥  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) ) ) )  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  =  ( ♯ ‘ 𝐵 ) )  | 
						
						
							| 93 | 
							
								14 16 21 91 92
							 | 
							syl22anc | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  =  ( ♯ ‘ 𝐵 ) )  | 
						
						
							| 94 | 
							
								
							 | 
							hashen | 
							⊢ ( ( ( 𝐺  DProd  𝑆 )  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  =  ( ♯ ‘ 𝐵 )  ↔  ( 𝐺  DProd  𝑆 )  ≈  𝐵 ) )  | 
						
						
							| 95 | 
							
								12 5 94
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐺  DProd  𝑆 ) )  =  ( ♯ ‘ 𝐵 )  ↔  ( 𝐺  DProd  𝑆 )  ≈  𝐵 ) )  | 
						
						
							| 96 | 
							
								93 95
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ≈  𝐵 )  | 
						
						
							| 97 | 
							
								
							 | 
							fisseneq | 
							⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝐺  DProd  𝑆 )  ⊆  𝐵  ∧  ( 𝐺  DProd  𝑆 )  ≈  𝐵 )  →  ( 𝐺  DProd  𝑆 )  =  𝐵 )  | 
						
						
							| 98 | 
							
								5 10 96 97
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  =  𝐵 )  |