| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfac1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablfac1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
ablfac1.s |
⊢ 𝑆 = ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
| 4 |
|
ablfac1.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 5 |
|
ablfac1.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 6 |
|
ablfac1.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℙ ) |
| 7 |
|
ablfac1c.d |
⊢ 𝐷 = { 𝑤 ∈ ℙ ∣ 𝑤 ∥ ( ♯ ‘ 𝐵 ) } |
| 8 |
|
ablfac1.2 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
| 9 |
|
ablfac1eu.1 |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑇 ∧ ( 𝐺 DProd 𝑇 ) = 𝐵 ) ) |
| 10 |
|
ablfac1eu.2 |
⊢ ( 𝜑 → dom 𝑇 = 𝐴 ) |
| 11 |
|
ablfac1eu.3 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝐶 ∈ ℕ0 ) |
| 12 |
|
ablfac1eu.4 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝑇 ‘ 𝑞 ) ) = ( 𝑞 ↑ 𝐶 ) ) |
| 13 |
|
ablfac1eulem.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 14 |
|
ablfac1eulem.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 15 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 16 |
|
sseq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 17 |
|
difeq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∖ { 𝑃 } ) = ( ∅ ∖ { 𝑃 } ) ) |
| 18 |
|
0dif |
⊢ ( ∅ ∖ { 𝑃 } ) = ∅ |
| 19 |
17 18
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∖ { 𝑃 } ) = ∅ ) |
| 20 |
19
|
reseq2d |
⊢ ( 𝑦 = ∅ → ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) = ( 𝑇 ↾ ∅ ) ) |
| 21 |
|
res0 |
⊢ ( 𝑇 ↾ ∅ ) = ∅ |
| 22 |
20 21
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) = ∅ ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) = ( 𝐺 DProd ∅ ) ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ) |
| 25 |
24
|
breq2d |
⊢ ( 𝑦 = ∅ → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ) ) |
| 26 |
25
|
notbid |
⊢ ( 𝑦 = ∅ → ( ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ) ) |
| 27 |
16 26
|
imbi12d |
⊢ ( 𝑦 = ∅ → ( ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ↔ ( ∅ ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑦 = ∅ → ( ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ) ) ) ) |
| 29 |
|
sseq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) |
| 30 |
|
difeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∖ { 𝑃 } ) = ( 𝑧 ∖ { 𝑃 } ) ) |
| 31 |
30
|
reseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) = ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) = ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) |
| 34 |
33
|
breq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) |
| 35 |
34
|
notbid |
⊢ ( 𝑦 = 𝑧 → ( ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) |
| 36 |
29 35
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ↔ ( 𝑧 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 37 |
36
|
imbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝑧 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) ) ) |
| 38 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( 𝑦 ⊆ 𝐴 ↔ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) |
| 39 |
|
difeq1 |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( 𝑦 ∖ { 𝑃 } ) = ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) |
| 40 |
39
|
reseq2d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) = ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) = ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) |
| 43 |
42
|
breq2d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) |
| 44 |
43
|
notbid |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) |
| 45 |
38 44
|
imbi12d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ↔ ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 46 |
45
|
imbi2d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑞 } ) → ( ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ) ↔ ( 𝜑 → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) ) |
| 47 |
|
sseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 48 |
|
difeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∖ { 𝑃 } ) = ( 𝐴 ∖ { 𝑃 } ) ) |
| 49 |
48
|
reseq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) = ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) = ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) |
| 51 |
50
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) |
| 52 |
51
|
breq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) ) |
| 53 |
52
|
notbid |
⊢ ( 𝑦 = 𝐴 → ( ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ↔ ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) ) |
| 54 |
47 53
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ↔ ( 𝐴 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 55 |
54
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑦 ∖ { 𝑃 } ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) ) ) ) |
| 56 |
|
nprmdvds1 |
⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1 ) |
| 57 |
13 56
|
syl |
⊢ ( 𝜑 → ¬ 𝑃 ∥ 1 ) |
| 58 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 59 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 60 |
59
|
dprd0 |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 61 |
4 58 60
|
3syl |
⊢ ( 𝜑 → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 62 |
61
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) |
| 63 |
62
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd ∅ ) ) = ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 64 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
| 65 |
|
hashsng |
⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) |
| 66 |
64 65
|
ax-mp |
⊢ ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 |
| 67 |
63 66
|
eqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd ∅ ) ) = 1 ) |
| 68 |
67
|
breq2d |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ↔ 𝑃 ∥ 1 ) ) |
| 69 |
57 68
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ) |
| 70 |
69
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ∅ ) ) ) ) |
| 71 |
|
ssun1 |
⊢ 𝑧 ⊆ ( 𝑧 ∪ { 𝑞 } ) |
| 72 |
|
sstr |
⊢ ( ( 𝑧 ⊆ ( 𝑧 ∪ { 𝑞 } ) ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) → 𝑧 ⊆ 𝐴 ) |
| 73 |
71 72
|
mpan |
⊢ ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → 𝑧 ⊆ 𝐴 ) |
| 74 |
73
|
imim1i |
⊢ ( ( 𝑧 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) |
| 75 |
9
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑇 ) |
| 76 |
75 10
|
dprdf2 |
⊢ ( 𝜑 → 𝑇 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝑇 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 78 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) |
| 79 |
78
|
ssdifssd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ⊆ 𝐴 ) |
| 80 |
77 79
|
fssresd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) : ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 81 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ¬ 𝑞 ∈ 𝑧 ) |
| 82 |
|
disjsn |
⊢ ( ( 𝑧 ∩ { 𝑞 } ) = ∅ ↔ ¬ 𝑞 ∈ 𝑧 ) |
| 83 |
81 82
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑧 ∩ { 𝑞 } ) = ∅ ) |
| 84 |
83
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝑧 ∩ { 𝑞 } ) ∖ { 𝑃 } ) = ( ∅ ∖ { 𝑃 } ) ) |
| 85 |
|
difindir |
⊢ ( ( 𝑧 ∩ { 𝑞 } ) ∖ { 𝑃 } ) = ( ( 𝑧 ∖ { 𝑃 } ) ∩ ( { 𝑞 } ∖ { 𝑃 } ) ) |
| 86 |
84 85 18
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝑧 ∖ { 𝑃 } ) ∩ ( { 𝑞 } ∖ { 𝑃 } ) ) = ∅ ) |
| 87 |
|
difundir |
⊢ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) = ( ( 𝑧 ∖ { 𝑃 } ) ∪ ( { 𝑞 } ∖ { 𝑃 } ) ) |
| 88 |
87
|
a1i |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) = ( ( 𝑧 ∖ { 𝑃 } ) ∪ ( { 𝑞 } ∖ { 𝑃 } ) ) ) |
| 89 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
| 90 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝐺 dom DProd 𝑇 ) |
| 91 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → dom 𝑇 = 𝐴 ) |
| 92 |
90 91 79
|
dprdres |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 dom DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ∧ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ⊆ ( 𝐺 DProd 𝑇 ) ) ) |
| 93 |
92
|
simpld |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝐺 dom DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) |
| 94 |
80 86 88 89 93
|
dprdsplit |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) = ( ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) |
| 95 |
94
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) |
| 96 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 97 |
80
|
fdmd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → dom ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) = ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) |
| 98 |
|
ssdif |
⊢ ( 𝑧 ⊆ ( 𝑧 ∪ { 𝑞 } ) → ( 𝑧 ∖ { 𝑃 } ) ⊆ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) |
| 99 |
71 98
|
mp1i |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑧 ∖ { 𝑃 } ) ⊆ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) |
| 100 |
93 97 99
|
dprdres |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 dom DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ∧ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) |
| 101 |
100
|
simpld |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝐺 dom DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) |
| 102 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 103 |
101 102
|
syl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 104 |
|
ssun2 |
⊢ { 𝑞 } ⊆ ( 𝑧 ∪ { 𝑞 } ) |
| 105 |
|
ssdif |
⊢ ( { 𝑞 } ⊆ ( 𝑧 ∪ { 𝑞 } ) → ( { 𝑞 } ∖ { 𝑃 } ) ⊆ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) |
| 106 |
104 105
|
mp1i |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( { 𝑞 } ∖ { 𝑃 } ) ⊆ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) |
| 107 |
93 97 106
|
dprdres |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 dom DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ∧ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) |
| 108 |
107
|
simpld |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝐺 dom DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) |
| 109 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 110 |
108 109
|
syl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 111 |
93 97 99 106 86 59
|
dprddisj2 |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∩ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 112 |
93 97 99 106 86 96
|
dprdcntz2 |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) |
| 113 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝐵 ∈ Fin ) |
| 114 |
1
|
dprdssv |
⊢ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ⊆ 𝐵 |
| 115 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ⊆ 𝐵 ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 116 |
113 114 115
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 117 |
1
|
dprdssv |
⊢ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ⊆ 𝐵 |
| 118 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ⊆ 𝐵 ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 119 |
113 117 118
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 120 |
89 59 96 103 110 111 112 116 119
|
lsmhash |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) = ( ( ♯ ‘ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) · ( ♯ ‘ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) |
| 121 |
99
|
resabs1d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) = ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) |
| 122 |
121
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) = ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) |
| 123 |
122
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) |
| 124 |
106
|
resabs1d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) = ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) |
| 125 |
124
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) = ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) |
| 126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) |
| 127 |
123 126
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( ♯ ‘ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) · ( ♯ ‘ ( 𝐺 DProd ( ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) = ( ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) · ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) |
| 128 |
95 120 127
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) = ( ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) · ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) |
| 129 |
128
|
breq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ↔ 𝑃 ∥ ( ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) · ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 130 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝑃 ∈ ℙ ) |
| 131 |
1
|
dprdssv |
⊢ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ⊆ 𝐵 |
| 132 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ⊆ 𝐵 ) → ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 133 |
113 131 132
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 134 |
|
hashcl |
⊢ ( ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∈ ℕ0 ) |
| 135 |
133 134
|
syl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∈ ℕ0 ) |
| 136 |
135
|
nn0zd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∈ ℤ ) |
| 137 |
1
|
dprdssv |
⊢ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ⊆ 𝐵 |
| 138 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ⊆ 𝐵 ) → ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 139 |
113 137 138
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ∈ Fin ) |
| 140 |
|
hashcl |
⊢ ( ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ∈ ℕ0 ) |
| 141 |
139 140
|
syl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ∈ ℕ0 ) |
| 142 |
141
|
nn0zd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ∈ ℤ ) |
| 143 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∈ ℤ ∧ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ∈ ℤ ) → ( 𝑃 ∥ ( ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) · ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ↔ ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∨ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 144 |
130 136 142 143
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑃 ∥ ( ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) · ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ↔ ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∨ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 145 |
129 144
|
bitrd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ↔ ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∨ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 146 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ¬ 𝑃 ∥ 1 ) |
| 147 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → 𝑞 = 𝑃 ) |
| 148 |
147
|
sneqd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → { 𝑞 } = { 𝑃 } ) |
| 149 |
148
|
difeq1d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( { 𝑞 } ∖ { 𝑃 } ) = ( { 𝑃 } ∖ { 𝑃 } ) ) |
| 150 |
|
difid |
⊢ ( { 𝑃 } ∖ { 𝑃 } ) = ∅ |
| 151 |
149 150
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( { 𝑞 } ∖ { 𝑃 } ) = ∅ ) |
| 152 |
151
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) = ( 𝑇 ↾ ∅ ) ) |
| 153 |
152 21
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) = ∅ ) |
| 154 |
153
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) = ( 𝐺 DProd ∅ ) ) |
| 155 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) |
| 156 |
154 155
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 157 |
156
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 158 |
157 66
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) = 1 ) |
| 159 |
158
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ↔ 𝑃 ∥ 1 ) ) |
| 160 |
146 159
|
mtbird |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 = 𝑃 ) → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) |
| 161 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝐴 ⊆ ℙ ) |
| 162 |
78
|
unssbd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → { 𝑞 } ⊆ 𝐴 ) |
| 163 |
|
vex |
⊢ 𝑞 ∈ V |
| 164 |
163
|
snss |
⊢ ( 𝑞 ∈ 𝐴 ↔ { 𝑞 } ⊆ 𝐴 ) |
| 165 |
162 164
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝑞 ∈ 𝐴 ) |
| 166 |
161 165
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝑞 ∈ ℙ ) |
| 167 |
165 11
|
syldan |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → 𝐶 ∈ ℕ0 ) |
| 168 |
|
prmdvdsexpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝐶 ∈ ℕ0 ) → ( 𝑃 ∥ ( 𝑞 ↑ 𝐶 ) → 𝑃 = 𝑞 ) ) |
| 169 |
130 166 167 168
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑃 ∥ ( 𝑞 ↑ 𝐶 ) → 𝑃 = 𝑞 ) ) |
| 170 |
|
eqcom |
⊢ ( 𝑃 = 𝑞 ↔ 𝑞 = 𝑃 ) |
| 171 |
169 170
|
imbitrdi |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑃 ∥ ( 𝑞 ↑ 𝐶 ) → 𝑞 = 𝑃 ) ) |
| 172 |
171
|
necon3ad |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑞 ≠ 𝑃 → ¬ 𝑃 ∥ ( 𝑞 ↑ 𝐶 ) ) ) |
| 173 |
172
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ¬ 𝑃 ∥ ( 𝑞 ↑ 𝐶 ) ) |
| 174 |
|
disjsn2 |
⊢ ( 𝑞 ≠ 𝑃 → ( { 𝑞 } ∩ { 𝑃 } ) = ∅ ) |
| 175 |
174
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( { 𝑞 } ∩ { 𝑃 } ) = ∅ ) |
| 176 |
|
disj3 |
⊢ ( ( { 𝑞 } ∩ { 𝑃 } ) = ∅ ↔ { 𝑞 } = ( { 𝑞 } ∖ { 𝑃 } ) ) |
| 177 |
175 176
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → { 𝑞 } = ( { 𝑞 } ∖ { 𝑃 } ) ) |
| 178 |
177
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( 𝑇 ↾ { 𝑞 } ) = ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) |
| 179 |
178
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( 𝐺 DProd ( 𝑇 ↾ { 𝑞 } ) ) = ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) |
| 180 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → 𝐺 dom DProd 𝑇 ) |
| 181 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → dom 𝑇 = 𝐴 ) |
| 182 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → 𝑞 ∈ 𝐴 ) |
| 183 |
180 181 182
|
dpjlem |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( 𝐺 DProd ( 𝑇 ↾ { 𝑞 } ) ) = ( 𝑇 ‘ 𝑞 ) ) |
| 184 |
179 183
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) = ( 𝑇 ‘ 𝑞 ) ) |
| 185 |
184
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) = ( ♯ ‘ ( 𝑇 ‘ 𝑞 ) ) ) |
| 186 |
165 12
|
syldan |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ♯ ‘ ( 𝑇 ‘ 𝑞 ) ) = ( 𝑞 ↑ 𝐶 ) ) |
| 187 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( ♯ ‘ ( 𝑇 ‘ 𝑞 ) ) = ( 𝑞 ↑ 𝐶 ) ) |
| 188 |
185 187
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) = ( 𝑞 ↑ 𝐶 ) ) |
| 189 |
188
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ↔ 𝑃 ∥ ( 𝑞 ↑ 𝐶 ) ) ) |
| 190 |
173 189
|
mtbird |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) ∧ 𝑞 ≠ 𝑃 ) → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) |
| 191 |
160 190
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) |
| 192 |
|
orel2 |
⊢ ( ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) → ( ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∨ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) → 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) |
| 193 |
191 192
|
syl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ∨ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( { 𝑞 } ∖ { 𝑃 } ) ) ) ) ) → 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) |
| 194 |
145 193
|
sylbid |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) → 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) |
| 195 |
194
|
con3d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑞 ∈ 𝑧 ∧ ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 ) ) → ( ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) |
| 196 |
195
|
expr |
⊢ ( ( 𝜑 ∧ ¬ 𝑞 ∈ 𝑧 ) → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ( ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 197 |
196
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑞 ∈ 𝑧 ) → ( ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 198 |
74 197
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑞 ∈ 𝑧 ) → ( ( 𝑧 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 199 |
198
|
expcom |
⊢ ( ¬ 𝑞 ∈ 𝑧 → ( 𝜑 → ( ( 𝑧 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) ) |
| 200 |
199
|
adantl |
⊢ ( ( 𝑧 ∈ Fin ∧ ¬ 𝑞 ∈ 𝑧 ) → ( 𝜑 → ( ( 𝑧 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) ) |
| 201 |
200
|
a2d |
⊢ ( ( 𝑧 ∈ Fin ∧ ¬ 𝑞 ∈ 𝑧 ) → ( ( 𝜑 → ( 𝑧 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝑧 ∖ { 𝑃 } ) ) ) ) ) ) → ( 𝜑 → ( ( 𝑧 ∪ { 𝑞 } ) ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( ( 𝑧 ∪ { 𝑞 } ) ∖ { 𝑃 } ) ) ) ) ) ) ) ) |
| 202 |
28 37 46 55 70 201
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) ) ) |
| 203 |
14 202
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) ) |
| 204 |
15 203
|
mpi |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ♯ ‘ ( 𝐺 DProd ( 𝑇 ↾ ( 𝐴 ∖ { 𝑃 } ) ) ) ) ) |