Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablfac.c |
⊢ 𝐶 = { 𝑟 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝐺 ↾s 𝑟 ) ∈ ( CycGrp ∩ ran pGrp ) } |
3 |
|
ablfac.1 |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
4 |
|
ablfac.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
ablfac.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
6 |
|
ablfac.a |
⊢ 𝐴 = { 𝑤 ∈ ℙ ∣ 𝑤 ∥ ( ♯ ‘ 𝐵 ) } |
7 |
|
ablfac.s |
⊢ 𝑆 = ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
8 |
|
ablfac.w |
⊢ 𝑊 = ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ↦ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑔 ) } ) |
9 |
|
eqeq2 |
⊢ ( 𝑔 = 𝑈 → ( ( 𝐺 DProd 𝑠 ) = 𝑔 ↔ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |
10 |
9
|
anbi2d |
⊢ ( 𝑔 = 𝑈 → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑔 ) ↔ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑔 = 𝑈 → { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑔 ) } = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) } ) |
12 |
|
fvex |
⊢ ( SubGrp ‘ 𝐺 ) ∈ V |
13 |
2 12
|
rabex2 |
⊢ 𝐶 ∈ V |
14 |
13
|
wrdexi |
⊢ Word 𝐶 ∈ V |
15 |
14
|
rabex |
⊢ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) } ∈ V |
16 |
11 8 15
|
fvmpt |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑊 ‘ 𝑈 ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) } ) |