| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ablfac.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ablfac.c | 
							⊢ 𝐶  =  { 𝑟  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝐺  ↾s  𝑟 )  ∈  ( CycGrp  ∩  ran   pGrp  ) }  | 
						
						
							| 3 | 
							
								
							 | 
							ablfac.1 | 
							⊢ ( 𝜑  →  𝐺  ∈  Abel )  | 
						
						
							| 4 | 
							
								
							 | 
							ablfac.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							ablfac.o | 
							⊢ 𝑂  =  ( od ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							ablfac.a | 
							⊢ 𝐴  =  { 𝑤  ∈  ℙ  ∣  𝑤  ∥  ( ♯ ‘ 𝐵 ) }  | 
						
						
							| 7 | 
							
								
							 | 
							ablfac.s | 
							⊢ 𝑆  =  ( 𝑝  ∈  𝐴  ↦  { 𝑥  ∈  𝐵  ∣  ( 𝑂 ‘ 𝑥 )  ∥  ( 𝑝 ↑ ( 𝑝  pCnt  ( ♯ ‘ 𝐵 ) ) ) } )  | 
						
						
							| 8 | 
							
								
							 | 
							ablfac.w | 
							⊢ 𝑊  =  ( 𝑔  ∈  ( SubGrp ‘ 𝐺 )  ↦  { 𝑠  ∈  Word  𝐶  ∣  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑔 ) } )  | 
						
						
							| 9 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑔  =  𝑈  →  ( ( 𝐺  DProd  𝑠 )  =  𝑔  ↔  ( 𝐺  DProd  𝑠 )  =  𝑈 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2d | 
							⊢ ( 𝑔  =  𝑈  →  ( ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑔 )  ↔  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑈 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rabbidv | 
							⊢ ( 𝑔  =  𝑈  →  { 𝑠  ∈  Word  𝐶  ∣  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑔 ) }  =  { 𝑠  ∈  Word  𝐶  ∣  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑈 ) } )  | 
						
						
							| 12 | 
							
								
							 | 
							fvex | 
							⊢ ( SubGrp ‘ 𝐺 )  ∈  V  | 
						
						
							| 13 | 
							
								2 12
							 | 
							rabex2 | 
							⊢ 𝐶  ∈  V  | 
						
						
							| 14 | 
							
								13
							 | 
							wrdexi | 
							⊢ Word  𝐶  ∈  V  | 
						
						
							| 15 | 
							
								14
							 | 
							rabex | 
							⊢ { 𝑠  ∈  Word  𝐶  ∣  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑈 ) }  ∈  V  | 
						
						
							| 16 | 
							
								11 8 15
							 | 
							fvmpt | 
							⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑊 ‘ 𝑈 )  =  { 𝑠  ∈  Word  𝐶  ∣  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑈 ) } )  |