Metamath Proof Explorer


Theorem ablfaclem2

Description: Lemma for ablfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Proof shortened by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses ablfac.b 𝐵 = ( Base ‘ 𝐺 )
ablfac.c 𝐶 = { 𝑟 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝐺s 𝑟 ) ∈ ( CycGrp ∩ ran pGrp ) }
ablfac.1 ( 𝜑𝐺 ∈ Abel )
ablfac.2 ( 𝜑𝐵 ∈ Fin )
ablfac.o 𝑂 = ( od ‘ 𝐺 )
ablfac.a 𝐴 = { 𝑤 ∈ ℙ ∣ 𝑤 ∥ ( ♯ ‘ 𝐵 ) }
ablfac.s 𝑆 = ( 𝑝𝐴 ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
ablfac.w 𝑊 = ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ↦ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑔 ) } )
ablfaclem2.f ( 𝜑𝐹 : 𝐴 ⟶ Word 𝐶 )
ablfaclem2.q ( 𝜑 → ∀ 𝑦𝐴 ( 𝐹𝑦 ) ∈ ( 𝑊 ‘ ( 𝑆𝑦 ) ) )
ablfaclem2.l 𝐿 = 𝑦𝐴 ( { 𝑦 } × dom ( 𝐹𝑦 ) )
ablfaclem2.g ( 𝜑𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) –1-1-onto𝐿 )
Assertion ablfaclem2 ( 𝜑 → ( 𝑊𝐵 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 ablfac.b 𝐵 = ( Base ‘ 𝐺 )
2 ablfac.c 𝐶 = { 𝑟 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝐺s 𝑟 ) ∈ ( CycGrp ∩ ran pGrp ) }
3 ablfac.1 ( 𝜑𝐺 ∈ Abel )
4 ablfac.2 ( 𝜑𝐵 ∈ Fin )
5 ablfac.o 𝑂 = ( od ‘ 𝐺 )
6 ablfac.a 𝐴 = { 𝑤 ∈ ℙ ∣ 𝑤 ∥ ( ♯ ‘ 𝐵 ) }
7 ablfac.s 𝑆 = ( 𝑝𝐴 ↦ { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } )
8 ablfac.w 𝑊 = ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ↦ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑔 ) } )
9 ablfaclem2.f ( 𝜑𝐹 : 𝐴 ⟶ Word 𝐶 )
10 ablfaclem2.q ( 𝜑 → ∀ 𝑦𝐴 ( 𝐹𝑦 ) ∈ ( 𝑊 ‘ ( 𝑆𝑦 ) ) )
11 ablfaclem2.l 𝐿 = 𝑦𝐴 ( { 𝑦 } × dom ( 𝐹𝑦 ) )
12 ablfaclem2.g ( 𝜑𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) –1-1-onto𝐿 )
13 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
14 1 subgid ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) )
15 1 2 3 4 5 6 7 8 ablfaclem1 ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑊𝐵 ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } )
16 3 13 14 15 4syl ( 𝜑 → ( 𝑊𝐵 ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } )
17 9 ffvelrnda ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ Word 𝐶 )
18 wrdf ( ( 𝐹𝑦 ) ∈ Word 𝐶 → ( 𝐹𝑦 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹𝑦 ) ) ) ⟶ 𝐶 )
19 17 18 syl ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹𝑦 ) ) ) ⟶ 𝐶 )
20 19 ffdmd ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) : dom ( 𝐹𝑦 ) ⟶ 𝐶 )
21 20 ffvelrnda ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧 ∈ dom ( 𝐹𝑦 ) ) → ( ( 𝐹𝑦 ) ‘ 𝑧 ) ∈ 𝐶 )
22 21 anasss ( ( 𝜑 ∧ ( 𝑦𝐴𝑧 ∈ dom ( 𝐹𝑦 ) ) ) → ( ( 𝐹𝑦 ) ‘ 𝑧 ) ∈ 𝐶 )
23 22 ralrimivva ( 𝜑 → ∀ 𝑦𝐴𝑧 ∈ dom ( 𝐹𝑦 ) ( ( 𝐹𝑦 ) ‘ 𝑧 ) ∈ 𝐶 )
24 eqid ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) = ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) )
25 24 fmpox ( ∀ 𝑦𝐴𝑧 ∈ dom ( 𝐹𝑦 ) ( ( 𝐹𝑦 ) ‘ 𝑧 ) ∈ 𝐶 ↔ ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) : 𝑦𝐴 ( { 𝑦 } × dom ( 𝐹𝑦 ) ) ⟶ 𝐶 )
26 23 25 sylib ( 𝜑 → ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) : 𝑦𝐴 ( { 𝑦 } × dom ( 𝐹𝑦 ) ) ⟶ 𝐶 )
27 11 feq2i ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) : 𝐿𝐶 ↔ ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) : 𝑦𝐴 ( { 𝑦 } × dom ( 𝐹𝑦 ) ) ⟶ 𝐶 )
28 26 27 sylibr ( 𝜑 → ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) : 𝐿𝐶 )
29 f1of ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) –1-1-onto𝐿𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐿 )
30 12 29 syl ( 𝜑𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐿 )
31 fco ( ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) : 𝐿𝐶𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐿 ) → ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐶 )
32 28 30 31 syl2anc ( 𝜑 → ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐶 )
33 iswrdi ( ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐶 → ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∈ Word 𝐶 )
34 32 33 syl ( 𝜑 → ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∈ Word 𝐶 )
35 10 r19.21bi ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ( 𝑊 ‘ ( 𝑆𝑦 ) ) )
36 6 ssrab3 𝐴 ⊆ ℙ
37 36 a1i ( 𝜑𝐴 ⊆ ℙ )
38 1 5 7 3 4 37 ablfac1b ( 𝜑𝐺 dom DProd 𝑆 )
39 1 fvexi 𝐵 ∈ V
40 39 rabex { 𝑥𝐵 ∣ ( 𝑂𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ V
41 40 7 dmmpti dom 𝑆 = 𝐴
42 41 a1i ( 𝜑 → dom 𝑆 = 𝐴 )
43 38 42 dprdf2 ( 𝜑𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
44 43 ffvelrnda ( ( 𝜑𝑦𝐴 ) → ( 𝑆𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) )
45 1 2 3 4 5 6 7 8 ablfaclem1 ( ( 𝑆𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑊 ‘ ( 𝑆𝑦 ) ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆𝑦 ) ) } )
46 44 45 syl ( ( 𝜑𝑦𝐴 ) → ( 𝑊 ‘ ( 𝑆𝑦 ) ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆𝑦 ) ) } )
47 35 46 eleqtrd ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆𝑦 ) ) } )
48 breq2 ( 𝑠 = ( 𝐹𝑦 ) → ( 𝐺 dom DProd 𝑠𝐺 dom DProd ( 𝐹𝑦 ) ) )
49 oveq2 ( 𝑠 = ( 𝐹𝑦 ) → ( 𝐺 DProd 𝑠 ) = ( 𝐺 DProd ( 𝐹𝑦 ) ) )
50 49 eqeq1d ( 𝑠 = ( 𝐹𝑦 ) → ( ( 𝐺 DProd 𝑠 ) = ( 𝑆𝑦 ) ↔ ( 𝐺 DProd ( 𝐹𝑦 ) ) = ( 𝑆𝑦 ) ) )
51 48 50 anbi12d ( 𝑠 = ( 𝐹𝑦 ) → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆𝑦 ) ) ↔ ( 𝐺 dom DProd ( 𝐹𝑦 ) ∧ ( 𝐺 DProd ( 𝐹𝑦 ) ) = ( 𝑆𝑦 ) ) ) )
52 51 elrab ( ( 𝐹𝑦 ) ∈ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆𝑦 ) ) } ↔ ( ( 𝐹𝑦 ) ∈ Word 𝐶 ∧ ( 𝐺 dom DProd ( 𝐹𝑦 ) ∧ ( 𝐺 DProd ( 𝐹𝑦 ) ) = ( 𝑆𝑦 ) ) ) )
53 52 simprbi ( ( 𝐹𝑦 ) ∈ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆𝑦 ) ) } → ( 𝐺 dom DProd ( 𝐹𝑦 ) ∧ ( 𝐺 DProd ( 𝐹𝑦 ) ) = ( 𝑆𝑦 ) ) )
54 47 53 syl ( ( 𝜑𝑦𝐴 ) → ( 𝐺 dom DProd ( 𝐹𝑦 ) ∧ ( 𝐺 DProd ( 𝐹𝑦 ) ) = ( 𝑆𝑦 ) ) )
55 54 simpld ( ( 𝜑𝑦𝐴 ) → 𝐺 dom DProd ( 𝐹𝑦 ) )
56 dprdf ( 𝐺 dom DProd ( 𝐹𝑦 ) → ( 𝐹𝑦 ) : dom ( 𝐹𝑦 ) ⟶ ( SubGrp ‘ 𝐺 ) )
57 55 56 syl ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) : dom ( 𝐹𝑦 ) ⟶ ( SubGrp ‘ 𝐺 ) )
58 57 ffvelrnda ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧 ∈ dom ( 𝐹𝑦 ) ) → ( ( 𝐹𝑦 ) ‘ 𝑧 ) ∈ ( SubGrp ‘ 𝐺 ) )
59 58 anasss ( ( 𝜑 ∧ ( 𝑦𝐴𝑧 ∈ dom ( 𝐹𝑦 ) ) ) → ( ( 𝐹𝑦 ) ‘ 𝑧 ) ∈ ( SubGrp ‘ 𝐺 ) )
60 57 feqmptd ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) = ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) )
61 55 60 breqtrd ( ( 𝜑𝑦𝐴 ) → 𝐺 dom DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) )
62 43 feqmptd ( 𝜑𝑆 = ( 𝑦𝐴 ↦ ( 𝑆𝑦 ) ) )
63 60 oveq2d ( ( 𝜑𝑦𝐴 ) → ( 𝐺 DProd ( 𝐹𝑦 ) ) = ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) )
64 54 simprd ( ( 𝜑𝑦𝐴 ) → ( 𝐺 DProd ( 𝐹𝑦 ) ) = ( 𝑆𝑦 ) )
65 63 64 eqtr3d ( ( 𝜑𝑦𝐴 ) → ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) = ( 𝑆𝑦 ) )
66 65 mpteq2dva ( 𝜑 → ( 𝑦𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) = ( 𝑦𝐴 ↦ ( 𝑆𝑦 ) ) )
67 62 66 eqtr4d ( 𝜑𝑆 = ( 𝑦𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) )
68 38 67 breqtrd ( 𝜑𝐺 dom DProd ( 𝑦𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) )
69 59 61 68 dprd2d2 ( 𝜑 → ( 𝐺 dom DProd ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∧ ( 𝐺 DProd ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) = ( 𝐺 DProd ( 𝑦𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) ) ) )
70 69 simpld ( 𝜑𝐺 dom DProd ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) )
71 28 fdmd ( 𝜑 → dom ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) = 𝐿 )
72 70 71 12 dprdf1o ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∧ ( 𝐺 DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = ( 𝐺 DProd ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) )
73 72 simpld ( 𝜑𝐺 dom DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) )
74 72 simprd ( 𝜑 → ( 𝐺 DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = ( 𝐺 DProd ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) )
75 69 simprd ( 𝜑 → ( 𝐺 DProd ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) = ( 𝐺 DProd ( 𝑦𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) ) )
76 67 oveq2d ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( 𝐺 DProd ( 𝑦𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) ) )
77 ssidd ( 𝜑𝐴𝐴 )
78 1 5 7 3 4 37 6 77 ablfac1c ( 𝜑 → ( 𝐺 DProd 𝑆 ) = 𝐵 )
79 76 78 eqtr3d ( 𝜑 → ( 𝐺 DProd ( 𝑦𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ) ) ) = 𝐵 )
80 74 75 79 3eqtrd ( 𝜑 → ( 𝐺 DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 )
81 breq2 ( 𝑠 = ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( 𝐺 dom DProd 𝑠𝐺 dom DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) )
82 oveq2 ( 𝑠 = ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( 𝐺 DProd 𝑠 ) = ( 𝐺 DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) )
83 82 eqeq1d ( 𝑠 = ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( ( 𝐺 DProd 𝑠 ) = 𝐵 ↔ ( 𝐺 DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 ) )
84 81 83 anbi12d ( 𝑠 = ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ↔ ( 𝐺 dom DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∧ ( 𝐺 DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 ) ) )
85 84 rspcev ( ( ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∈ Word 𝐶 ∧ ( 𝐺 dom DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∧ ( 𝐺 DProd ( ( 𝑦𝐴 , 𝑧 ∈ dom ( 𝐹𝑦 ) ↦ ( ( 𝐹𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 ) ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) )
86 34 73 80 85 syl12anc ( 𝜑 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) )
87 rabn0 ( { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } ≠ ∅ ↔ ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) )
88 86 87 sylibr ( 𝜑 → { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } ≠ ∅ )
89 16 88 eqnetrd ( 𝜑 → ( 𝑊𝐵 ) ≠ ∅ )