Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablfac.c |
⊢ 𝐶 = { 𝑟 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝐺 ↾s 𝑟 ) ∈ ( CycGrp ∩ ran pGrp ) } |
3 |
|
ablfac.1 |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
4 |
|
ablfac.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
ablfac.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
6 |
|
ablfac.a |
⊢ 𝐴 = { 𝑤 ∈ ℙ ∣ 𝑤 ∥ ( ♯ ‘ 𝐵 ) } |
7 |
|
ablfac.s |
⊢ 𝑆 = ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
8 |
|
ablfac.w |
⊢ 𝑊 = ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ↦ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑔 ) } ) |
9 |
|
ablfaclem2.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Word 𝐶 ) |
10 |
|
ablfaclem2.q |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑊 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
11 |
|
ablfaclem2.l |
⊢ 𝐿 = ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × dom ( 𝐹 ‘ 𝑦 ) ) |
12 |
|
ablfaclem2.g |
⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) –1-1-onto→ 𝐿 ) |
13 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
14 |
1
|
subgid |
⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
15 |
1 2 3 4 5 6 7 8
|
ablfaclem1 |
⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑊 ‘ 𝐵 ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } ) |
16 |
3 13 14 15
|
4syl |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐵 ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } ) |
17 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ Word 𝐶 ) |
18 |
|
wrdf |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ Word 𝐶 → ( 𝐹 ‘ 𝑦 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ‘ 𝑦 ) ) ) ⟶ 𝐶 ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ‘ 𝑦 ) ) ) ⟶ 𝐶 ) |
20 |
19
|
ffdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) : dom ( 𝐹 ‘ 𝑦 ) ⟶ 𝐶 ) |
21 |
20
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐶 ) |
22 |
21
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐶 ) |
23 |
22
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐶 ) |
24 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) = ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) |
25 |
24
|
fmpox |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐶 ↔ ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) : ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × dom ( 𝐹 ‘ 𝑦 ) ) ⟶ 𝐶 ) |
26 |
23 25
|
sylib |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) : ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × dom ( 𝐹 ‘ 𝑦 ) ) ⟶ 𝐶 ) |
27 |
11
|
feq2i |
⊢ ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) : 𝐿 ⟶ 𝐶 ↔ ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) : ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × dom ( 𝐹 ‘ 𝑦 ) ) ⟶ 𝐶 ) |
28 |
26 27
|
sylibr |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) : 𝐿 ⟶ 𝐶 ) |
29 |
|
f1of |
⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) –1-1-onto→ 𝐿 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐿 ) |
30 |
12 29
|
syl |
⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐿 ) |
31 |
|
fco |
⊢ ( ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) : 𝐿 ⟶ 𝐶 ∧ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐿 ) → ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐶 ) |
32 |
28 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐶 ) |
33 |
|
iswrdi |
⊢ ( ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) : ( 0 ..^ ( ♯ ‘ 𝐿 ) ) ⟶ 𝐶 → ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∈ Word 𝐶 ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∈ Word 𝐶 ) |
35 |
10
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑊 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
36 |
6
|
ssrab3 |
⊢ 𝐴 ⊆ ℙ |
37 |
36
|
a1i |
⊢ ( 𝜑 → 𝐴 ⊆ ℙ ) |
38 |
1 5 7 3 4 37
|
ablfac1b |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
39 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
40 |
39
|
rabex |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ V |
41 |
40 7
|
dmmpti |
⊢ dom 𝑆 = 𝐴 |
42 |
41
|
a1i |
⊢ ( 𝜑 → dom 𝑆 = 𝐴 ) |
43 |
38 42
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
44 |
43
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
45 |
1 2 3 4 5 6 7 8
|
ablfaclem1 |
⊢ ( ( 𝑆 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑊 ‘ ( 𝑆 ‘ 𝑦 ) ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆 ‘ 𝑦 ) ) } ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑊 ‘ ( 𝑆 ‘ 𝑦 ) ) = { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆 ‘ 𝑦 ) ) } ) |
47 |
35 46
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆 ‘ 𝑦 ) ) } ) |
48 |
|
breq2 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑦 ) → ( 𝐺 dom DProd 𝑠 ↔ 𝐺 dom DProd ( 𝐹 ‘ 𝑦 ) ) ) |
49 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑦 ) → ( 𝐺 DProd 𝑠 ) = ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
49
|
eqeq1d |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐺 DProd 𝑠 ) = ( 𝑆 ‘ 𝑦 ) ↔ ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) = ( 𝑆 ‘ 𝑦 ) ) ) |
51 |
48 50
|
anbi12d |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝐺 dom DProd ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) = ( 𝑆 ‘ 𝑦 ) ) ) ) |
52 |
51
|
elrab |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆 ‘ 𝑦 ) ) } ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ Word 𝐶 ∧ ( 𝐺 dom DProd ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) = ( 𝑆 ‘ 𝑦 ) ) ) ) |
53 |
52
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = ( 𝑆 ‘ 𝑦 ) ) } → ( 𝐺 dom DProd ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) = ( 𝑆 ‘ 𝑦 ) ) ) |
54 |
47 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 dom DProd ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) = ( 𝑆 ‘ 𝑦 ) ) ) |
55 |
54
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐺 dom DProd ( 𝐹 ‘ 𝑦 ) ) |
56 |
|
dprdf |
⊢ ( 𝐺 dom DProd ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) : dom ( 𝐹 ‘ 𝑦 ) ⟶ ( SubGrp ‘ 𝐺 ) ) |
57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) : dom ( 𝐹 ‘ 𝑦 ) ⟶ ( SubGrp ‘ 𝐺 ) ) |
58 |
57
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
59 |
58
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
60 |
57
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
61 |
55 60
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐺 dom DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
62 |
43
|
feqmptd |
⊢ ( 𝜑 → 𝑆 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑆 ‘ 𝑦 ) ) ) |
63 |
60
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) = ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) |
64 |
54
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 DProd ( 𝐹 ‘ 𝑦 ) ) = ( 𝑆 ‘ 𝑦 ) ) |
65 |
63 64
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) = ( 𝑆 ‘ 𝑦 ) ) |
66 |
65
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝑆 ‘ 𝑦 ) ) ) |
67 |
62 66
|
eqtr4d |
⊢ ( 𝜑 → 𝑆 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) ) |
68 |
38 67
|
breqtrd |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) ) |
69 |
59 61 68
|
dprd2d2 |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∧ ( 𝐺 DProd ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) = ( 𝐺 DProd ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) ) ) ) |
70 |
69
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
71 |
28
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) = 𝐿 ) |
72 |
70 71 12
|
dprdf1o |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∧ ( 𝐺 DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = ( 𝐺 DProd ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) ) |
73 |
72
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) |
74 |
72
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = ( 𝐺 DProd ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) |
75 |
69
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) = ( 𝐺 DProd ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) ) ) |
76 |
67
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( 𝐺 DProd ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) ) ) |
77 |
|
ssidd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐴 ) |
78 |
1 5 7 3 4 37 6 77
|
ablfac1c |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = 𝐵 ) |
79 |
76 78
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 DProd ( 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ) ) ) = 𝐵 ) |
80 |
74 75 79
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 ) |
81 |
|
breq2 |
⊢ ( 𝑠 = ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( 𝐺 dom DProd 𝑠 ↔ 𝐺 dom DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) ) |
82 |
|
oveq2 |
⊢ ( 𝑠 = ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( 𝐺 DProd 𝑠 ) = ( 𝐺 DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) ) |
83 |
82
|
eqeq1d |
⊢ ( 𝑠 = ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( ( 𝐺 DProd 𝑠 ) = 𝐵 ↔ ( 𝐺 DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 ) ) |
84 |
81 83
|
anbi12d |
⊢ ( 𝑠 = ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ↔ ( 𝐺 dom DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∧ ( 𝐺 DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 ) ) ) |
85 |
84
|
rspcev |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∈ Word 𝐶 ∧ ( 𝐺 dom DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ∧ ( 𝐺 DProd ( ( 𝑦 ∈ 𝐴 , 𝑧 ∈ dom ( 𝐹 ‘ 𝑦 ) ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑧 ) ) ∘ 𝐻 ) ) = 𝐵 ) ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) |
86 |
34 73 80 85
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) |
87 |
|
rabn0 |
⊢ ( { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } ≠ ∅ ↔ ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) |
88 |
86 87
|
sylibr |
⊢ ( 𝜑 → { 𝑠 ∈ Word 𝐶 ∣ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) } ≠ ∅ ) |
89 |
16 88
|
eqnetrd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐵 ) ≠ ∅ ) |