Step |
Hyp |
Ref |
Expression |
1 |
|
ablfacrp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablfacrp.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
ablfacrp.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } |
4 |
|
ablfacrp.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } |
5 |
|
ablfacrp.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
6 |
|
ablfacrp.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
ablfacrp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
8 |
|
ablfacrp.1 |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
9 |
|
ablfacrp.2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑀 · 𝑁 ) ) |
10 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
11 |
7
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
10 11
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
13 |
9 12
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
14 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
15 |
|
hashclb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
17 |
13 16
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
18 |
3
|
ssrab3 |
⊢ 𝐾 ⊆ 𝐵 |
19 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐾 ⊆ 𝐵 ) → 𝐾 ∈ Fin ) |
20 |
17 18 19
|
sylancl |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
21 |
|
hashcl |
⊢ ( 𝐾 ∈ Fin → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
23 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
24 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
25 |
5 23 24
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
3 25
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
27 |
1
|
lagsubg |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝐵 ) ) |
28 |
26 17 27
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝐵 ) ) |
29 |
6
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
30 |
7
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
31 |
29 30
|
mulcomd |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
32 |
9 31
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑁 · 𝑀 ) ) |
33 |
28 32
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ ( 𝑁 · 𝑀 ) ) |
34 |
1 2 3 4 5 6 7 8 9
|
ablfacrplem |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) |
35 |
22
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℤ ) |
36 |
7
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
37 |
|
coprmdvds |
⊢ ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐾 ) ∥ ( 𝑁 · 𝑀 ) ∧ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) → ( ♯ ‘ 𝐾 ) ∥ 𝑀 ) ) |
38 |
35 36 23 37
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐾 ) ∥ ( 𝑁 · 𝑀 ) ∧ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) → ( ♯ ‘ 𝐾 ) ∥ 𝑀 ) ) |
39 |
33 34 38
|
mp2and |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ 𝑀 ) |
40 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ) |
41 |
5 36 40
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ) |
42 |
4 41
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ ( SubGrp ‘ 𝐺 ) ) |
43 |
1
|
lagsubg |
⊢ ( ( 𝐿 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐿 ) ∥ ( ♯ ‘ 𝐵 ) ) |
44 |
42 17 43
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∥ ( ♯ ‘ 𝐵 ) ) |
45 |
44 9
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∥ ( 𝑀 · 𝑁 ) ) |
46 |
23 36
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) |
47 |
46 8
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = 1 ) |
48 |
1 2 4 3 5 7 6 47 32
|
ablfacrplem |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐿 ) gcd 𝑀 ) = 1 ) |
49 |
4
|
ssrab3 |
⊢ 𝐿 ⊆ 𝐵 |
50 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐿 ⊆ 𝐵 ) → 𝐿 ∈ Fin ) |
51 |
17 49 50
|
sylancl |
⊢ ( 𝜑 → 𝐿 ∈ Fin ) |
52 |
|
hashcl |
⊢ ( 𝐿 ∈ Fin → ( ♯ ‘ 𝐿 ) ∈ ℕ0 ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∈ ℕ0 ) |
54 |
53
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∈ ℤ ) |
55 |
|
coprmdvds |
⊢ ( ( ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐿 ) ∥ ( 𝑀 · 𝑁 ) ∧ ( ( ♯ ‘ 𝐿 ) gcd 𝑀 ) = 1 ) → ( ♯ ‘ 𝐿 ) ∥ 𝑁 ) ) |
56 |
54 23 36 55
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐿 ) ∥ ( 𝑀 · 𝑁 ) ∧ ( ( ♯ ‘ 𝐿 ) gcd 𝑀 ) = 1 ) → ( ♯ ‘ 𝐿 ) ∥ 𝑁 ) ) |
57 |
45 48 56
|
mp2and |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∥ 𝑁 ) |
58 |
|
dvdscmul |
⊢ ( ( ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ♯ ‘ 𝐿 ) ∥ 𝑁 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( 𝑀 · 𝑁 ) ) ) |
59 |
54 36 23 58
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐿 ) ∥ 𝑁 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( 𝑀 · 𝑁 ) ) ) |
60 |
57 59
|
mpd |
⊢ ( 𝜑 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( 𝑀 · 𝑁 ) ) |
61 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
62 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
63 |
1 2 3 4 5 6 7 8 9 61 62
|
ablfacrp |
⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐿 ) = { ( 0g ‘ 𝐺 ) } ∧ ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) = 𝐵 ) ) |
64 |
63
|
simprd |
⊢ ( 𝜑 → ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) = 𝐵 ) |
65 |
64
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) ) = ( ♯ ‘ 𝐵 ) ) |
66 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
67 |
63
|
simpld |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐿 ) = { ( 0g ‘ 𝐺 ) } ) |
68 |
66 5 26 42
|
ablcntzd |
⊢ ( 𝜑 → 𝐾 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ 𝐿 ) ) |
69 |
62 61 66 26 42 67 68 20 51
|
lsmhash |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) ) = ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
70 |
65 69
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
71 |
70 9
|
eqtr3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) = ( 𝑀 · 𝑁 ) ) |
72 |
60 71
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
73 |
61
|
subg0cl |
⊢ ( 𝐿 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐿 ) |
74 |
|
ne0i |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐿 → 𝐿 ≠ ∅ ) |
75 |
42 73 74
|
3syl |
⊢ ( 𝜑 → 𝐿 ≠ ∅ ) |
76 |
|
hashnncl |
⊢ ( 𝐿 ∈ Fin → ( ( ♯ ‘ 𝐿 ) ∈ ℕ ↔ 𝐿 ≠ ∅ ) ) |
77 |
51 76
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐿 ) ∈ ℕ ↔ 𝐿 ≠ ∅ ) ) |
78 |
75 77
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∈ ℕ ) |
79 |
78
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ≠ 0 ) |
80 |
|
dvdsmulcr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ ( ♯ ‘ 𝐿 ) ≠ 0 ) ) → ( ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) ) |
81 |
23 35 54 79 80
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) ) |
82 |
72 81
|
mpbid |
⊢ ( 𝜑 → 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) |
83 |
|
dvdseq |
⊢ ( ( ( ( ♯ ‘ 𝐾 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝐾 ) ∥ 𝑀 ∧ 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) ) → ( ♯ ‘ 𝐾 ) = 𝑀 ) |
84 |
22 10 39 82 83
|
syl22anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) = 𝑀 ) |
85 |
|
dvdsmulc |
⊢ ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝐾 ) ∥ 𝑀 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
86 |
35 23 36 85
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) ∥ 𝑀 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
87 |
39 86
|
mpd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
88 |
87 71
|
breqtrrd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
89 |
84 6
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ ) |
90 |
89
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ≠ 0 ) |
91 |
|
dvdscmulr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ≠ 0 ) ) → ( ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) ) |
92 |
36 54 35 90 91
|
syl112anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) ) |
93 |
88 92
|
mpbid |
⊢ ( 𝜑 → 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) |
94 |
|
dvdseq |
⊢ ( ( ( ( ♯ ‘ 𝐿 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝐿 ) ∥ 𝑁 ∧ 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) ) → ( ♯ ‘ 𝐿 ) = 𝑁 ) |
95 |
53 11 57 93 94
|
syl22anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) = 𝑁 ) |
96 |
84 95
|
jca |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) = 𝑀 ∧ ( ♯ ‘ 𝐿 ) = 𝑁 ) ) |