Step |
Hyp |
Ref |
Expression |
1 |
|
ablnncan.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablnncan.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
ablnncan.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
4 |
|
ablnncan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
ablnncan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
1 6 2 3 4 4 5
|
ablsubsub |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − 𝑌 ) ) = ( ( 𝑋 − 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) ) |
8 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
11 |
1 10 2
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
12 |
9 4 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑌 ) ) |
14 |
1 6 10
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑌 ) = 𝑌 ) |
15 |
9 5 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑌 ) = 𝑌 ) |
16 |
7 13 15
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − 𝑌 ) ) = 𝑌 ) |