Step |
Hyp |
Ref |
Expression |
1 |
|
ablnncan.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablnncan.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
ablnncan.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
4 |
|
ablnncan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
ablnncan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
ablsub32.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
8 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
10 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
11 |
9 5 6 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
12 |
1 7 2 3 4 11 6
|
ablsubsub4 |
⊢ ( 𝜑 → ( ( 𝑋 − ( 𝑌 − 𝑍 ) ) − 𝑍 ) = ( 𝑋 − ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) ) ) |
13 |
1 7
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) ) |
14 |
3 11 6 13
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) ) |
15 |
1 7 2
|
ablpncan3 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) = 𝑌 ) |
16 |
3 6 5 15
|
syl12anc |
⊢ ( 𝜑 → ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) = 𝑌 ) |
17 |
14 16
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = 𝑌 ) |
18 |
17
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 − ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) ) = ( 𝑋 − 𝑌 ) ) |
19 |
12 18
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 − ( 𝑌 − 𝑍 ) ) − 𝑍 ) = ( 𝑋 − 𝑌 ) ) |