Metamath Proof Explorer


Theorem ablnnncan

Description: Cancellation law for group subtraction. ( nnncan analog.) (Contributed by NM, 29-Feb-2008) (Revised by AV, 27-Aug-2021)

Ref Expression
Hypotheses ablnncan.b 𝐵 = ( Base ‘ 𝐺 )
ablnncan.m = ( -g𝐺 )
ablnncan.g ( 𝜑𝐺 ∈ Abel )
ablnncan.x ( 𝜑𝑋𝐵 )
ablnncan.y ( 𝜑𝑌𝐵 )
ablsub32.z ( 𝜑𝑍𝐵 )
Assertion ablnnncan ( 𝜑 → ( ( 𝑋 ( 𝑌 𝑍 ) ) 𝑍 ) = ( 𝑋 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ablnncan.b 𝐵 = ( Base ‘ 𝐺 )
2 ablnncan.m = ( -g𝐺 )
3 ablnncan.g ( 𝜑𝐺 ∈ Abel )
4 ablnncan.x ( 𝜑𝑋𝐵 )
5 ablnncan.y ( 𝜑𝑌𝐵 )
6 ablsub32.z ( 𝜑𝑍𝐵 )
7 eqid ( +g𝐺 ) = ( +g𝐺 )
8 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
9 3 8 syl ( 𝜑𝐺 ∈ Grp )
10 1 2 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) ∈ 𝐵 )
11 9 5 6 10 syl3anc ( 𝜑 → ( 𝑌 𝑍 ) ∈ 𝐵 )
12 1 7 2 3 4 11 6 ablsubsub4 ( 𝜑 → ( ( 𝑋 ( 𝑌 𝑍 ) ) 𝑍 ) = ( 𝑋 ( ( 𝑌 𝑍 ) ( +g𝐺 ) 𝑍 ) ) )
13 1 7 ablcom ( ( 𝐺 ∈ Abel ∧ ( 𝑌 𝑍 ) ∈ 𝐵𝑍𝐵 ) → ( ( 𝑌 𝑍 ) ( +g𝐺 ) 𝑍 ) = ( 𝑍 ( +g𝐺 ) ( 𝑌 𝑍 ) ) )
14 3 11 6 13 syl3anc ( 𝜑 → ( ( 𝑌 𝑍 ) ( +g𝐺 ) 𝑍 ) = ( 𝑍 ( +g𝐺 ) ( 𝑌 𝑍 ) ) )
15 1 7 2 ablpncan3 ( ( 𝐺 ∈ Abel ∧ ( 𝑍𝐵𝑌𝐵 ) ) → ( 𝑍 ( +g𝐺 ) ( 𝑌 𝑍 ) ) = 𝑌 )
16 3 6 5 15 syl12anc ( 𝜑 → ( 𝑍 ( +g𝐺 ) ( 𝑌 𝑍 ) ) = 𝑌 )
17 14 16 eqtrd ( 𝜑 → ( ( 𝑌 𝑍 ) ( +g𝐺 ) 𝑍 ) = 𝑌 )
18 17 oveq2d ( 𝜑 → ( 𝑋 ( ( 𝑌 𝑍 ) ( +g𝐺 ) 𝑍 ) ) = ( 𝑋 𝑌 ) )
19 12 18 eqtrd ( 𝜑 → ( ( 𝑋 ( 𝑌 𝑍 ) ) 𝑍 ) = ( 𝑋 𝑌 ) )