Step |
Hyp |
Ref |
Expression |
1 |
|
ablnncan.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablnncan.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
ablnncan.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
4 |
|
ablnncan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
ablnncan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
ablsub32.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
9 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
10 |
8 4 6 9
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
11 |
1 2 3 4 5 10
|
ablsub32 |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − ( 𝑋 − 𝑍 ) ) = ( ( 𝑋 − ( 𝑋 − 𝑍 ) ) − 𝑌 ) ) |
12 |
1 2 3 4 6
|
ablnncan |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − 𝑍 ) ) = 𝑍 ) |
13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 − ( 𝑋 − 𝑍 ) ) − 𝑌 ) = ( 𝑍 − 𝑌 ) ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − ( 𝑋 − 𝑍 ) ) = ( 𝑍 − 𝑌 ) ) |