Metamath Proof Explorer


Theorem ablnnncan1

Description: Cancellation law for group subtraction. ( nnncan1 analog.) (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablnncan.b 𝐵 = ( Base ‘ 𝐺 )
ablnncan.m = ( -g𝐺 )
ablnncan.g ( 𝜑𝐺 ∈ Abel )
ablnncan.x ( 𝜑𝑋𝐵 )
ablnncan.y ( 𝜑𝑌𝐵 )
ablsub32.z ( 𝜑𝑍𝐵 )
Assertion ablnnncan1 ( 𝜑 → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) = ( 𝑍 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ablnncan.b 𝐵 = ( Base ‘ 𝐺 )
2 ablnncan.m = ( -g𝐺 )
3 ablnncan.g ( 𝜑𝐺 ∈ Abel )
4 ablnncan.x ( 𝜑𝑋𝐵 )
5 ablnncan.y ( 𝜑𝑌𝐵 )
6 ablsub32.z ( 𝜑𝑍𝐵 )
7 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
8 3 7 syl ( 𝜑𝐺 ∈ Grp )
9 1 2 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) ∈ 𝐵 )
10 8 4 6 9 syl3anc ( 𝜑 → ( 𝑋 𝑍 ) ∈ 𝐵 )
11 1 2 3 4 5 10 ablsub32 ( 𝜑 → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) = ( ( 𝑋 ( 𝑋 𝑍 ) ) 𝑌 ) )
12 1 2 3 4 6 ablnncan ( 𝜑 → ( 𝑋 ( 𝑋 𝑍 ) ) = 𝑍 )
13 12 oveq1d ( 𝜑 → ( ( 𝑋 ( 𝑋 𝑍 ) ) 𝑌 ) = ( 𝑍 𝑌 ) )
14 11 13 eqtrd ( 𝜑 → ( ( 𝑋 𝑌 ) ( 𝑋 𝑍 ) ) = ( 𝑍 𝑌 ) )